Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralab2 | Unicode version |
Description: Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ralab2.1 |
Ref | Expression |
---|---|
ralab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2453 | . 2 | |
2 | nfsab1 2160 | . . . 4 | |
3 | nfv 1521 | . . . 4 | |
4 | 2, 3 | nfim 1565 | . . 3 |
5 | nfv 1521 | . . 3 | |
6 | eleq1 2233 | . . . . 5 | |
7 | abid 2158 | . . . . 5 | |
8 | 6, 7 | bitrdi 195 | . . . 4 |
9 | ralab2.1 | . . . 4 | |
10 | 8, 9 | imbi12d 233 | . . 3 |
11 | 4, 5, 10 | cbval 1747 | . 2 |
12 | 1, 11 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wcel 2141 cab 2156 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 |
This theorem is referenced by: ralrab2 2895 ssintab 3848 |
Copyright terms: Public domain | W3C validator |