ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralab2 Unicode version

Theorem ralab2 2872
Description: Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralab2  |-  ( A. x  e.  { y  |  ph } ps  <->  A. y
( ph  ->  ch )
)
Distinct variable groups:    x, y    ch, x    ph, x    ps, y
Allowed substitution hints:    ph( y)    ps( x)    ch( y)

Proof of Theorem ralab2
StepHypRef Expression
1 df-ral 2437 . 2  |-  ( A. x  e.  { y  |  ph } ps  <->  A. x
( x  e.  {
y  |  ph }  ->  ps ) )
2 nfsab1 2144 . . . 4  |-  F/ y  x  e.  { y  |  ph }
3 nfv 1505 . . . 4  |-  F/ y ps
42, 3nfim 1549 . . 3  |-  F/ y ( x  e.  {
y  |  ph }  ->  ps )
5 nfv 1505 . . 3  |-  F/ x
( ph  ->  ch )
6 eleq1 2217 . . . . 5  |-  ( x  =  y  ->  (
x  e.  { y  |  ph }  <->  y  e.  { y  |  ph }
) )
7 abid 2142 . . . . 5  |-  ( y  e.  { y  | 
ph }  <->  ph )
86, 7bitrdi 195 . . . 4  |-  ( x  =  y  ->  (
x  e.  { y  |  ph }  <->  ph ) )
9 ralab2.1 . . . 4  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
108, 9imbi12d 233 . . 3  |-  ( x  =  y  ->  (
( x  e.  {
y  |  ph }  ->  ps )  <->  ( ph  ->  ch ) ) )
114, 5, 10cbval 1731 . 2  |-  ( A. x ( x  e. 
{ y  |  ph }  ->  ps )  <->  A. y
( ph  ->  ch )
)
121, 11bitri 183 1  |-  ( A. x  e.  { y  |  ph } ps  <->  A. y
( ph  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1330    e. wcel 2125   {cab 2140   A.wral 2432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-11 1483  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-ral 2437
This theorem is referenced by:  ralrab2  2873  ssintab  3820
  Copyright terms: Public domain W3C validator