| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralab2 | Unicode version | ||
| Description: Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| ralab2.1 | 
 | 
| Ref | Expression | 
|---|---|
| ralab2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ral 2480 | 
. 2
 | |
| 2 | nfsab1 2186 | 
. . . 4
 | |
| 3 | nfv 1542 | 
. . . 4
 | |
| 4 | 2, 3 | nfim 1586 | 
. . 3
 | 
| 5 | nfv 1542 | 
. . 3
 | |
| 6 | eleq1 2259 | 
. . . . 5
 | |
| 7 | abid 2184 | 
. . . . 5
 | |
| 8 | 6, 7 | bitrdi 196 | 
. . . 4
 | 
| 9 | ralab2.1 | 
. . . 4
 | |
| 10 | 8, 9 | imbi12d 234 | 
. . 3
 | 
| 11 | 4, 5, 10 | cbval 1768 | 
. 2
 | 
| 12 | 1, 11 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 | 
| This theorem is referenced by: ralrab2 2929 ssintab 3891 | 
| Copyright terms: Public domain | W3C validator |