ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralab2 Unicode version

Theorem ralab2 2924
Description: Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralab2  |-  ( A. x  e.  { y  |  ph } ps  <->  A. y
( ph  ->  ch )
)
Distinct variable groups:    x, y    ch, x    ph, x    ps, y
Allowed substitution hints:    ph( y)    ps( x)    ch( y)

Proof of Theorem ralab2
StepHypRef Expression
1 df-ral 2477 . 2  |-  ( A. x  e.  { y  |  ph } ps  <->  A. x
( x  e.  {
y  |  ph }  ->  ps ) )
2 nfsab1 2183 . . . 4  |-  F/ y  x  e.  { y  |  ph }
3 nfv 1539 . . . 4  |-  F/ y ps
42, 3nfim 1583 . . 3  |-  F/ y ( x  e.  {
y  |  ph }  ->  ps )
5 nfv 1539 . . 3  |-  F/ x
( ph  ->  ch )
6 eleq1 2256 . . . . 5  |-  ( x  =  y  ->  (
x  e.  { y  |  ph }  <->  y  e.  { y  |  ph }
) )
7 abid 2181 . . . . 5  |-  ( y  e.  { y  | 
ph }  <->  ph )
86, 7bitrdi 196 . . . 4  |-  ( x  =  y  ->  (
x  e.  { y  |  ph }  <->  ph ) )
9 ralab2.1 . . . 4  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
108, 9imbi12d 234 . . 3  |-  ( x  =  y  ->  (
( x  e.  {
y  |  ph }  ->  ps )  <->  ( ph  ->  ch ) ) )
114, 5, 10cbval 1765 . 2  |-  ( A. x ( x  e. 
{ y  |  ph }  ->  ps )  <->  A. y
( ph  ->  ch )
)
121, 11bitri 184 1  |-  ( A. x  e.  { y  |  ph } ps  <->  A. y
( ph  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    e. wcel 2164   {cab 2179   A.wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ral 2477
This theorem is referenced by:  ralrab2  2925  ssintab  3887
  Copyright terms: Public domain W3C validator