![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rgenw | Unicode version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 |
![]() ![]() |
Ref | Expression |
---|---|
rgenw |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rgen 2547 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-ral 2477 |
This theorem is referenced by: rgen2w 2550 reuun1 3441 0disj 4026 iinexgm 4183 epse 4373 xpiindim 4799 eliunxp 4801 opeliunxp2 4802 elrnmpti 4915 fnmpti 5382 mpoeq12 5978 iunex 6175 mpoex 6267 opeliunxp2f 6291 ixpssmap 6786 1domsn 6873 nneneq 6913 nqprrnd 7603 nqprdisj 7604 uzf 9595 sum0 11531 fisumcom2 11581 prod0 11728 fprodcom2fi 11769 phisum 12378 sumhashdc 12485 unennn 12554 fczpsrbag 14157 tgidm 14242 tgrest 14337 txbas 14426 reldvg 14833 dvfvalap 14835 bj-indint 15423 bj-nn0suc0 15442 bj-nntrans 15443 |
Copyright terms: Public domain | W3C validator |