| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgenw | Unicode version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 |
|
| Ref | Expression |
|---|---|
| rgenw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | rgen 2559 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: rgen2w 2562 reuun1 3455 0disj 4042 iinexgm 4199 epse 4390 xpiindim 4816 eliunxp 4818 opeliunxp2 4819 elrnmpti 4932 fnmpti 5406 mpoeq12 6007 iunex 6210 mpoex 6302 opeliunxp2f 6326 ixpssmap 6821 1domsn 6916 nneneq 6956 nqprrnd 7658 nqprdisj 7659 uzf 9653 sum0 11732 fisumcom2 11782 prod0 11929 fprodcom2fi 11970 phisum 12596 sumhashdc 12703 unennn 12801 prdsvallem 13137 prdsval 13138 fczpsrbag 14466 psr1clfi 14483 tgidm 14579 tgrest 14674 txbas 14763 reldvg 15184 dvfvalap 15186 bj-indint 15904 bj-nn0suc0 15923 bj-nntrans 15924 |
| Copyright terms: Public domain | W3C validator |