Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rgenw | Unicode version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 |
Ref | Expression |
---|---|
rgenw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | 2 | rgen 2519 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-ral 2449 |
This theorem is referenced by: rgen2w 2522 reuun1 3404 0disj 3979 iinexgm 4133 epse 4320 xpiindim 4741 eliunxp 4743 opeliunxp2 4744 elrnmpti 4857 fnmpti 5316 mpoeq12 5902 iunex 6091 mpoex 6182 opeliunxp2f 6206 ixpssmap 6698 1domsn 6785 nneneq 6823 nqprrnd 7484 nqprdisj 7485 uzf 9469 sum0 11329 fisumcom2 11379 prod0 11526 fprodcom2fi 11567 phisum 12172 sumhashdc 12277 unennn 12330 tgidm 12714 tgrest 12809 txbas 12898 reldvg 13288 dvfvalap 13290 bj-indint 13813 bj-nn0suc0 13832 bj-nntrans 13833 |
Copyright terms: Public domain | W3C validator |