| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgenw | Unicode version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 |
|
| Ref | Expression |
|---|---|
| rgenw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | rgen 2583 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: rgen2w 2586 reuun1 3486 0disj 4080 iinexgm 4238 epse 4433 xpiindim 4859 eliunxp 4861 opeliunxp2 4862 elrnmpti 4977 fnmpti 5452 mpoeq12 6064 relmptopab 6207 iunex 6268 mpoex 6360 opeliunxp2f 6384 ixpssmap 6879 1domsn 6976 nneneq 7018 nqprrnd 7730 nqprdisj 7731 uzf 9725 sum0 11899 fisumcom2 11949 prod0 12096 fprodcom2fi 12137 phisum 12763 sumhashdc 12870 unennn 12968 prdsvallem 13305 prdsval 13306 fczpsrbag 14635 psr1clfi 14652 tgidm 14748 tgrest 14843 txbas 14932 reldvg 15353 dvfvalap 15355 bj-indint 16294 bj-nn0suc0 16313 bj-nntrans 16314 |
| Copyright terms: Public domain | W3C validator |