| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgenw | Unicode version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 |
|
| Ref | Expression |
|---|---|
| rgenw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | rgen 2550 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: rgen2w 2553 reuun1 3445 0disj 4030 iinexgm 4187 epse 4377 xpiindim 4803 eliunxp 4805 opeliunxp2 4806 elrnmpti 4919 fnmpti 5386 mpoeq12 5982 iunex 6180 mpoex 6272 opeliunxp2f 6296 ixpssmap 6791 1domsn 6878 nneneq 6918 nqprrnd 7610 nqprdisj 7611 uzf 9604 sum0 11553 fisumcom2 11603 prod0 11750 fprodcom2fi 11791 phisum 12409 sumhashdc 12516 unennn 12614 fczpsrbag 14225 tgidm 14310 tgrest 14405 txbas 14494 reldvg 14915 dvfvalap 14917 bj-indint 15577 bj-nn0suc0 15596 bj-nntrans 15597 |
| Copyright terms: Public domain | W3C validator |