| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txcnmpt | Unicode version | ||
| Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| txcnmpt.1 |
|
| txcnmpt.2 |
|
| Ref | Expression |
|---|---|
| txcnmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcnmpt.1 |
. . . . . . 7
| |
| 2 | eqid 2196 |
. . . . . . 7
| |
| 3 | 1, 2 | cnf 14524 |
. . . . . 6
|
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | 4 | ffvelcdmda 5700 |
. . . 4
|
| 6 | eqid 2196 |
. . . . . . 7
| |
| 7 | 1, 6 | cnf 14524 |
. . . . . 6
|
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | 8 | ffvelcdmda 5700 |
. . . 4
|
| 10 | 5, 9 | opelxpd 4697 |
. . 3
|
| 11 | txcnmpt.2 |
. . 3
| |
| 12 | 10, 11 | fmptd 5719 |
. 2
|
| 13 | 11 | mptpreima 5164 |
. . . . . 6
|
| 14 | 4 | adantr 276 |
. . . . . . . . . . . . 13
|
| 15 | 14 | adantr 276 |
. . . . . . . . . . . 12
|
| 16 | ffn 5410 |
. . . . . . . . . . . 12
| |
| 17 | elpreima 5684 |
. . . . . . . . . . . 12
| |
| 18 | 15, 16, 17 | 3syl 17 |
. . . . . . . . . . 11
|
| 19 | ibar 301 |
. . . . . . . . . . . 12
| |
| 20 | 19 | adantl 277 |
. . . . . . . . . . 11
|
| 21 | 18, 20 | bitr4d 191 |
. . . . . . . . . 10
|
| 22 | 8 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 23 | ffn 5410 |
. . . . . . . . . . . 12
| |
| 24 | elpreima 5684 |
. . . . . . . . . . . 12
| |
| 25 | 22, 23, 24 | 3syl 17 |
. . . . . . . . . . 11
|
| 26 | ibar 301 |
. . . . . . . . . . . 12
| |
| 27 | 26 | adantl 277 |
. . . . . . . . . . 11
|
| 28 | 25, 27 | bitr4d 191 |
. . . . . . . . . 10
|
| 29 | 21, 28 | anbi12d 473 |
. . . . . . . . 9
|
| 30 | elin 3347 |
. . . . . . . . 9
| |
| 31 | opelxp 4694 |
. . . . . . . . 9
| |
| 32 | 29, 30, 31 | 3bitr4g 223 |
. . . . . . . 8
|
| 33 | 32 | rabbi2dva 3372 |
. . . . . . 7
|
| 34 | inss1 3384 |
. . . . . . . . . 10
| |
| 35 | cnvimass 5033 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | sstri 3193 |
. . . . . . . . 9
|
| 37 | 36, 14 | fssdm 5425 |
. . . . . . . 8
|
| 38 | sseqin2 3383 |
. . . . . . . 8
| |
| 39 | 37, 38 | sylib 122 |
. . . . . . 7
|
| 40 | 33, 39 | eqtr3d 2231 |
. . . . . 6
|
| 41 | 13, 40 | eqtrid 2241 |
. . . . 5
|
| 42 | cntop1 14521 |
. . . . . . . 8
| |
| 43 | 42 | adantl 277 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | cnima 14540 |
. . . . . . 7
| |
| 46 | 45 | ad2ant2r 509 |
. . . . . 6
|
| 47 | cnima 14540 |
. . . . . . 7
| |
| 48 | 47 | ad2ant2l 508 |
. . . . . 6
|
| 49 | inopn 14323 |
. . . . . 6
| |
| 50 | 44, 46, 48, 49 | syl3anc 1249 |
. . . . 5
|
| 51 | 41, 50 | eqeltrd 2273 |
. . . 4
|
| 52 | 51 | ralrimivva 2579 |
. . 3
|
| 53 | vex 2766 |
. . . . . 6
| |
| 54 | vex 2766 |
. . . . . 6
| |
| 55 | 53, 54 | xpex 4779 |
. . . . 5
|
| 56 | 55 | rgen2w 2553 |
. . . 4
|
| 57 | eqid 2196 |
. . . . 5
| |
| 58 | imaeq2 5006 |
. . . . . 6
| |
| 59 | 58 | eleq1d 2265 |
. . . . 5
|
| 60 | 57, 59 | ralrnmpo 6041 |
. . . 4
|
| 61 | 56, 60 | ax-mp 5 |
. . 3
|
| 62 | 52, 61 | sylibr 134 |
. 2
|
| 63 | 1 | toptopon 14338 |
. . . 4
|
| 64 | 43, 63 | sylib 122 |
. . 3
|
| 65 | cntop2 14522 |
. . . 4
| |
| 66 | cntop2 14522 |
. . . 4
| |
| 67 | eqid 2196 |
. . . . 5
| |
| 68 | 67 | txval 14575 |
. . . 4
|
| 69 | 65, 66, 68 | syl2an 289 |
. . 3
|
| 70 | toptopon2 14339 |
. . . . 5
| |
| 71 | 65, 70 | sylib 122 |
. . . 4
|
| 72 | toptopon2 14339 |
. . . . 5
| |
| 73 | 66, 72 | sylib 122 |
. . . 4
|
| 74 | txtopon 14582 |
. . . 4
| |
| 75 | 71, 73, 74 | syl2an 289 |
. . 3
|
| 76 | 64, 69, 75 | tgcn 14528 |
. 2
|
| 77 | 12, 62, 76 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-topgen 12962 df-top 14318 df-topon 14331 df-bases 14363 df-cn 14508 df-tx 14573 |
| This theorem is referenced by: uptx 14594 cnmpt1t 14605 cnmpt2t 14613 |
| Copyright terms: Public domain | W3C validator |