Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txcnmpt | Unicode version |
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
txcnmpt.1 | |
txcnmpt.2 |
Ref | Expression |
---|---|
txcnmpt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txcnmpt.1 | . . . . . . 7 | |
2 | eqid 2165 | . . . . . . 7 | |
3 | 1, 2 | cnf 12844 | . . . . . 6 |
4 | 3 | adantr 274 | . . . . 5 |
5 | 4 | ffvelrnda 5620 | . . . 4 |
6 | eqid 2165 | . . . . . . 7 | |
7 | 1, 6 | cnf 12844 | . . . . . 6 |
8 | 7 | adantl 275 | . . . . 5 |
9 | 8 | ffvelrnda 5620 | . . . 4 |
10 | 5, 9 | opelxpd 4637 | . . 3 |
11 | txcnmpt.2 | . . 3 | |
12 | 10, 11 | fmptd 5639 | . 2 |
13 | 11 | mptpreima 5097 | . . . . . 6 |
14 | 4 | adantr 274 | . . . . . . . . . . . . 13 |
15 | 14 | adantr 274 | . . . . . . . . . . . 12 |
16 | ffn 5337 | . . . . . . . . . . . 12 | |
17 | elpreima 5604 | . . . . . . . . . . . 12 | |
18 | 15, 16, 17 | 3syl 17 | . . . . . . . . . . 11 |
19 | ibar 299 | . . . . . . . . . . . 12 | |
20 | 19 | adantl 275 | . . . . . . . . . . 11 |
21 | 18, 20 | bitr4d 190 | . . . . . . . . . 10 |
22 | 8 | ad2antrr 480 | . . . . . . . . . . . 12 |
23 | ffn 5337 | . . . . . . . . . . . 12 | |
24 | elpreima 5604 | . . . . . . . . . . . 12 | |
25 | 22, 23, 24 | 3syl 17 | . . . . . . . . . . 11 |
26 | ibar 299 | . . . . . . . . . . . 12 | |
27 | 26 | adantl 275 | . . . . . . . . . . 11 |
28 | 25, 27 | bitr4d 190 | . . . . . . . . . 10 |
29 | 21, 28 | anbi12d 465 | . . . . . . . . 9 |
30 | elin 3305 | . . . . . . . . 9 | |
31 | opelxp 4634 | . . . . . . . . 9 | |
32 | 29, 30, 31 | 3bitr4g 222 | . . . . . . . 8 |
33 | 32 | rabbi2dva 3330 | . . . . . . 7 |
34 | inss1 3342 | . . . . . . . . . 10 | |
35 | cnvimass 4967 | . . . . . . . . . 10 | |
36 | 34, 35 | sstri 3151 | . . . . . . . . 9 |
37 | 36, 14 | fssdm 5352 | . . . . . . . 8 |
38 | sseqin2 3341 | . . . . . . . 8 | |
39 | 37, 38 | sylib 121 | . . . . . . 7 |
40 | 33, 39 | eqtr3d 2200 | . . . . . 6 |
41 | 13, 40 | syl5eq 2211 | . . . . 5 |
42 | cntop1 12841 | . . . . . . . 8 | |
43 | 42 | adantl 275 | . . . . . . 7 |
44 | 43 | adantr 274 | . . . . . 6 |
45 | cnima 12860 | . . . . . . 7 | |
46 | 45 | ad2ant2r 501 | . . . . . 6 |
47 | cnima 12860 | . . . . . . 7 | |
48 | 47 | ad2ant2l 500 | . . . . . 6 |
49 | inopn 12641 | . . . . . 6 | |
50 | 44, 46, 48, 49 | syl3anc 1228 | . . . . 5 |
51 | 41, 50 | eqeltrd 2243 | . . . 4 |
52 | 51 | ralrimivva 2548 | . . 3 |
53 | vex 2729 | . . . . . 6 | |
54 | vex 2729 | . . . . . 6 | |
55 | 53, 54 | xpex 4719 | . . . . 5 |
56 | 55 | rgen2w 2522 | . . . 4 |
57 | eqid 2165 | . . . . 5 | |
58 | imaeq2 4942 | . . . . . 6 | |
59 | 58 | eleq1d 2235 | . . . . 5 |
60 | 57, 59 | ralrnmpo 5956 | . . . 4 |
61 | 56, 60 | ax-mp 5 | . . 3 |
62 | 52, 61 | sylibr 133 | . 2 |
63 | 1 | toptopon 12656 | . . . 4 TopOn |
64 | 43, 63 | sylib 121 | . . 3 TopOn |
65 | cntop2 12842 | . . . 4 | |
66 | cntop2 12842 | . . . 4 | |
67 | eqid 2165 | . . . . 5 | |
68 | 67 | txval 12895 | . . . 4 |
69 | 65, 66, 68 | syl2an 287 | . . 3 |
70 | toptopon2 12657 | . . . . 5 TopOn | |
71 | 65, 70 | sylib 121 | . . . 4 TopOn |
72 | toptopon2 12657 | . . . . 5 TopOn | |
73 | 66, 72 | sylib 121 | . . . 4 TopOn |
74 | txtopon 12902 | . . . 4 TopOn TopOn TopOn | |
75 | 71, 73, 74 | syl2an 287 | . . 3 TopOn |
76 | 64, 69, 75 | tgcn 12848 | . 2 |
77 | 12, 62, 76 | mpbir2and 934 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 crab 2448 cvv 2726 cin 3115 wss 3116 cop 3579 cuni 3789 cmpt 4043 cxp 4602 ccnv 4603 cdm 4604 crn 4605 cima 4607 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cmpo 5844 ctg 12571 ctop 12635 TopOnctopon 12648 ccn 12825 ctx 12892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 df-cn 12828 df-tx 12893 |
This theorem is referenced by: uptx 12914 cnmpt1t 12925 cnmpt2t 12933 |
Copyright terms: Public domain | W3C validator |