Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txcnmpt | Unicode version |
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
txcnmpt.1 | |
txcnmpt.2 |
Ref | Expression |
---|---|
txcnmpt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txcnmpt.1 | . . . . . . 7 | |
2 | eqid 2170 | . . . . . . 7 | |
3 | 1, 2 | cnf 12998 | . . . . . 6 |
4 | 3 | adantr 274 | . . . . 5 |
5 | 4 | ffvelrnda 5631 | . . . 4 |
6 | eqid 2170 | . . . . . . 7 | |
7 | 1, 6 | cnf 12998 | . . . . . 6 |
8 | 7 | adantl 275 | . . . . 5 |
9 | 8 | ffvelrnda 5631 | . . . 4 |
10 | 5, 9 | opelxpd 4644 | . . 3 |
11 | txcnmpt.2 | . . 3 | |
12 | 10, 11 | fmptd 5650 | . 2 |
13 | 11 | mptpreima 5104 | . . . . . 6 |
14 | 4 | adantr 274 | . . . . . . . . . . . . 13 |
15 | 14 | adantr 274 | . . . . . . . . . . . 12 |
16 | ffn 5347 | . . . . . . . . . . . 12 | |
17 | elpreima 5615 | . . . . . . . . . . . 12 | |
18 | 15, 16, 17 | 3syl 17 | . . . . . . . . . . 11 |
19 | ibar 299 | . . . . . . . . . . . 12 | |
20 | 19 | adantl 275 | . . . . . . . . . . 11 |
21 | 18, 20 | bitr4d 190 | . . . . . . . . . 10 |
22 | 8 | ad2antrr 485 | . . . . . . . . . . . 12 |
23 | ffn 5347 | . . . . . . . . . . . 12 | |
24 | elpreima 5615 | . . . . . . . . . . . 12 | |
25 | 22, 23, 24 | 3syl 17 | . . . . . . . . . . 11 |
26 | ibar 299 | . . . . . . . . . . . 12 | |
27 | 26 | adantl 275 | . . . . . . . . . . 11 |
28 | 25, 27 | bitr4d 190 | . . . . . . . . . 10 |
29 | 21, 28 | anbi12d 470 | . . . . . . . . 9 |
30 | elin 3310 | . . . . . . . . 9 | |
31 | opelxp 4641 | . . . . . . . . 9 | |
32 | 29, 30, 31 | 3bitr4g 222 | . . . . . . . 8 |
33 | 32 | rabbi2dva 3335 | . . . . . . 7 |
34 | inss1 3347 | . . . . . . . . . 10 | |
35 | cnvimass 4974 | . . . . . . . . . 10 | |
36 | 34, 35 | sstri 3156 | . . . . . . . . 9 |
37 | 36, 14 | fssdm 5362 | . . . . . . . 8 |
38 | sseqin2 3346 | . . . . . . . 8 | |
39 | 37, 38 | sylib 121 | . . . . . . 7 |
40 | 33, 39 | eqtr3d 2205 | . . . . . 6 |
41 | 13, 40 | eqtrid 2215 | . . . . 5 |
42 | cntop1 12995 | . . . . . . . 8 | |
43 | 42 | adantl 275 | . . . . . . 7 |
44 | 43 | adantr 274 | . . . . . 6 |
45 | cnima 13014 | . . . . . . 7 | |
46 | 45 | ad2ant2r 506 | . . . . . 6 |
47 | cnima 13014 | . . . . . . 7 | |
48 | 47 | ad2ant2l 505 | . . . . . 6 |
49 | inopn 12795 | . . . . . 6 | |
50 | 44, 46, 48, 49 | syl3anc 1233 | . . . . 5 |
51 | 41, 50 | eqeltrd 2247 | . . . 4 |
52 | 51 | ralrimivva 2552 | . . 3 |
53 | vex 2733 | . . . . . 6 | |
54 | vex 2733 | . . . . . 6 | |
55 | 53, 54 | xpex 4726 | . . . . 5 |
56 | 55 | rgen2w 2526 | . . . 4 |
57 | eqid 2170 | . . . . 5 | |
58 | imaeq2 4949 | . . . . . 6 | |
59 | 58 | eleq1d 2239 | . . . . 5 |
60 | 57, 59 | ralrnmpo 5967 | . . . 4 |
61 | 56, 60 | ax-mp 5 | . . 3 |
62 | 52, 61 | sylibr 133 | . 2 |
63 | 1 | toptopon 12810 | . . . 4 TopOn |
64 | 43, 63 | sylib 121 | . . 3 TopOn |
65 | cntop2 12996 | . . . 4 | |
66 | cntop2 12996 | . . . 4 | |
67 | eqid 2170 | . . . . 5 | |
68 | 67 | txval 13049 | . . . 4 |
69 | 65, 66, 68 | syl2an 287 | . . 3 |
70 | toptopon2 12811 | . . . . 5 TopOn | |
71 | 65, 70 | sylib 121 | . . . 4 TopOn |
72 | toptopon2 12811 | . . . . 5 TopOn | |
73 | 66, 72 | sylib 121 | . . . 4 TopOn |
74 | txtopon 13056 | . . . 4 TopOn TopOn TopOn | |
75 | 71, 73, 74 | syl2an 287 | . . 3 TopOn |
76 | 64, 69, 75 | tgcn 13002 | . 2 |
77 | 12, 62, 76 | mpbir2and 939 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 crab 2452 cvv 2730 cin 3120 wss 3121 cop 3586 cuni 3796 cmpt 4050 cxp 4609 ccnv 4610 cdm 4611 crn 4612 cima 4614 wfn 5193 wf 5194 cfv 5198 (class class class)co 5853 cmpo 5855 ctg 12594 ctop 12789 TopOnctopon 12802 ccn 12979 ctx 13046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-topgen 12600 df-top 12790 df-topon 12803 df-bases 12835 df-cn 12982 df-tx 13047 |
This theorem is referenced by: uptx 13068 cnmpt1t 13079 cnmpt2t 13087 |
Copyright terms: Public domain | W3C validator |