Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txcnmpt | Unicode version |
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
txcnmpt.1 | |
txcnmpt.2 |
Ref | Expression |
---|---|
txcnmpt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txcnmpt.1 | . . . . . . 7 | |
2 | eqid 2157 | . . . . . . 7 | |
3 | 1, 2 | cnf 12575 | . . . . . 6 |
4 | 3 | adantr 274 | . . . . 5 |
5 | 4 | ffvelrnda 5601 | . . . 4 |
6 | eqid 2157 | . . . . . . 7 | |
7 | 1, 6 | cnf 12575 | . . . . . 6 |
8 | 7 | adantl 275 | . . . . 5 |
9 | 8 | ffvelrnda 5601 | . . . 4 |
10 | 5, 9 | opelxpd 4618 | . . 3 |
11 | txcnmpt.2 | . . 3 | |
12 | 10, 11 | fmptd 5620 | . 2 |
13 | 11 | mptpreima 5078 | . . . . . 6 |
14 | 4 | adantr 274 | . . . . . . . . . . . . 13 |
15 | 14 | adantr 274 | . . . . . . . . . . . 12 |
16 | ffn 5318 | . . . . . . . . . . . 12 | |
17 | elpreima 5585 | . . . . . . . . . . . 12 | |
18 | 15, 16, 17 | 3syl 17 | . . . . . . . . . . 11 |
19 | ibar 299 | . . . . . . . . . . . 12 | |
20 | 19 | adantl 275 | . . . . . . . . . . 11 |
21 | 18, 20 | bitr4d 190 | . . . . . . . . . 10 |
22 | 8 | ad2antrr 480 | . . . . . . . . . . . 12 |
23 | ffn 5318 | . . . . . . . . . . . 12 | |
24 | elpreima 5585 | . . . . . . . . . . . 12 | |
25 | 22, 23, 24 | 3syl 17 | . . . . . . . . . . 11 |
26 | ibar 299 | . . . . . . . . . . . 12 | |
27 | 26 | adantl 275 | . . . . . . . . . . 11 |
28 | 25, 27 | bitr4d 190 | . . . . . . . . . 10 |
29 | 21, 28 | anbi12d 465 | . . . . . . . . 9 |
30 | elin 3290 | . . . . . . . . 9 | |
31 | opelxp 4615 | . . . . . . . . 9 | |
32 | 29, 30, 31 | 3bitr4g 222 | . . . . . . . 8 |
33 | 32 | rabbi2dva 3315 | . . . . . . 7 |
34 | inss1 3327 | . . . . . . . . . 10 | |
35 | cnvimass 4948 | . . . . . . . . . 10 | |
36 | 34, 35 | sstri 3137 | . . . . . . . . 9 |
37 | 36, 14 | fssdm 5333 | . . . . . . . 8 |
38 | sseqin2 3326 | . . . . . . . 8 | |
39 | 37, 38 | sylib 121 | . . . . . . 7 |
40 | 33, 39 | eqtr3d 2192 | . . . . . 6 |
41 | 13, 40 | syl5eq 2202 | . . . . 5 |
42 | cntop1 12572 | . . . . . . . 8 | |
43 | 42 | adantl 275 | . . . . . . 7 |
44 | 43 | adantr 274 | . . . . . 6 |
45 | cnima 12591 | . . . . . . 7 | |
46 | 45 | ad2ant2r 501 | . . . . . 6 |
47 | cnima 12591 | . . . . . . 7 | |
48 | 47 | ad2ant2l 500 | . . . . . 6 |
49 | inopn 12372 | . . . . . 6 | |
50 | 44, 46, 48, 49 | syl3anc 1220 | . . . . 5 |
51 | 41, 50 | eqeltrd 2234 | . . . 4 |
52 | 51 | ralrimivva 2539 | . . 3 |
53 | vex 2715 | . . . . . 6 | |
54 | vex 2715 | . . . . . 6 | |
55 | 53, 54 | xpex 4700 | . . . . 5 |
56 | 55 | rgen2w 2513 | . . . 4 |
57 | eqid 2157 | . . . . 5 | |
58 | imaeq2 4923 | . . . . . 6 | |
59 | 58 | eleq1d 2226 | . . . . 5 |
60 | 57, 59 | ralrnmpo 5932 | . . . 4 |
61 | 56, 60 | ax-mp 5 | . . 3 |
62 | 52, 61 | sylibr 133 | . 2 |
63 | 1 | toptopon 12387 | . . . 4 TopOn |
64 | 43, 63 | sylib 121 | . . 3 TopOn |
65 | cntop2 12573 | . . . 4 | |
66 | cntop2 12573 | . . . 4 | |
67 | eqid 2157 | . . . . 5 | |
68 | 67 | txval 12626 | . . . 4 |
69 | 65, 66, 68 | syl2an 287 | . . 3 |
70 | toptopon2 12388 | . . . . 5 TopOn | |
71 | 65, 70 | sylib 121 | . . . 4 TopOn |
72 | toptopon2 12388 | . . . . 5 TopOn | |
73 | 66, 72 | sylib 121 | . . . 4 TopOn |
74 | txtopon 12633 | . . . 4 TopOn TopOn TopOn | |
75 | 71, 73, 74 | syl2an 287 | . . 3 TopOn |
76 | 64, 69, 75 | tgcn 12579 | . 2 |
77 | 12, 62, 76 | mpbir2and 929 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 crab 2439 cvv 2712 cin 3101 wss 3102 cop 3563 cuni 3772 cmpt 4025 cxp 4583 ccnv 4584 cdm 4585 crn 4586 cima 4588 wfn 5164 wf 5165 cfv 5169 (class class class)co 5821 cmpo 5823 ctg 12337 ctop 12366 TopOnctopon 12379 ccn 12556 ctx 12623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-map 6592 df-topgen 12343 df-top 12367 df-topon 12380 df-bases 12412 df-cn 12559 df-tx 12624 |
This theorem is referenced by: uptx 12645 cnmpt1t 12656 cnmpt2t 12664 |
Copyright terms: Public domain | W3C validator |