ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltx Unicode version

Theorem eltx 13798
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
eltx  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
Distinct variable groups:    x, p, y, J    K, p, x, y    S, p, x, y
Allowed substitution hints:    V( x, y, p)    W( x, y, p)

Proof of Theorem eltx
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4  |-  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) )  =  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) )
21txval 13794 . . 3  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ) )
32eleq2d 2247 . 2  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <-> 
S  e.  ( topGen ` 
ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ) ) )
41txbasex 13796 . . . 4  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )  e. 
_V )
5 eltg2b 13593 . . . 4  |-  ( ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) )  e.  _V  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S ) ) )
64, 5syl 14 . . 3  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S ) ) )
7 vex 2742 . . . . . . 7  |-  x  e. 
_V
8 vex 2742 . . . . . . 7  |-  y  e. 
_V
97, 8xpex 4743 . . . . . 6  |-  ( x  X.  y )  e. 
_V
109rgen2w 2533 . . . . 5  |-  A. x  e.  J  A. y  e.  K  ( x  X.  y )  e.  _V
11 eqid 2177 . . . . . 6  |-  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )  =  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )
12 eleq2 2241 . . . . . . 7  |-  ( z  =  ( x  X.  y )  ->  (
p  e.  z  <->  p  e.  ( x  X.  y
) ) )
13 sseq1 3180 . . . . . . 7  |-  ( z  =  ( x  X.  y )  ->  (
z  C_  S  <->  ( x  X.  y )  C_  S
) )
1412, 13anbi12d 473 . . . . . 6  |-  ( z  =  ( x  X.  y )  ->  (
( p  e.  z  /\  z  C_  S
)  <->  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) ) )
1511, 14rexrnmpo 5992 . . . . 5  |-  ( A. x  e.  J  A. y  e.  K  (
x  X.  y )  e.  _V  ->  ( E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S )  <->  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) ) )
1610, 15ax-mp 5 . . . 4  |-  ( E. z  e.  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) ) ( p  e.  z  /\  z  C_  S )  <->  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) )
1716ralbii 2483 . . 3  |-  ( A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ( p  e.  z  /\  z  C_  S
)  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) )
186, 17bitrdi 196 . 2  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
193, 18bitrd 188 1  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2739    C_ wss 3131    X. cxp 4626   ran crn 4629   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   topGenctg 12708    tX ctx 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-topgen 12714  df-tx 13792
This theorem is referenced by:  txdis  13816  txdis1cn  13817
  Copyright terms: Public domain W3C validator