| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltx | Unicode version | ||
| Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . 4
| |
| 2 | 1 | txval 14923 |
. . 3
|
| 3 | 2 | eleq2d 2299 |
. 2
|
| 4 | 1 | txbasex 14925 |
. . . 4
|
| 5 | eltg2b 14722 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | vex 2802 |
. . . . . . 7
| |
| 8 | vex 2802 |
. . . . . . 7
| |
| 9 | 7, 8 | xpex 4833 |
. . . . . 6
|
| 10 | 9 | rgen2w 2586 |
. . . . 5
|
| 11 | eqid 2229 |
. . . . . 6
| |
| 12 | eleq2 2293 |
. . . . . . 7
| |
| 13 | sseq1 3247 |
. . . . . . 7
| |
| 14 | 12, 13 | anbi12d 473 |
. . . . . 6
|
| 15 | 11, 14 | rexrnmpo 6119 |
. . . . 5
|
| 16 | 10, 15 | ax-mp 5 |
. . . 4
|
| 17 | 16 | ralbii 2536 |
. . 3
|
| 18 | 6, 17 | bitrdi 196 |
. 2
|
| 19 | 3, 18 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-topgen 13288 df-tx 14921 |
| This theorem is referenced by: txdis 14945 txdis1cn 14946 |
| Copyright terms: Public domain | W3C validator |