ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltx Unicode version

Theorem eltx 12899
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
eltx  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
Distinct variable groups:    x, p, y, J    K, p, x, y    S, p, x, y
Allowed substitution hints:    V( x, y, p)    W( x, y, p)

Proof of Theorem eltx
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . 4  |-  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) )  =  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) )
21txval 12895 . . 3  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ) )
32eleq2d 2236 . 2  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <-> 
S  e.  ( topGen ` 
ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ) ) )
41txbasex 12897 . . . 4  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )  e. 
_V )
5 eltg2b 12694 . . . 4  |-  ( ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) )  e.  _V  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S ) ) )
64, 5syl 14 . . 3  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S ) ) )
7 vex 2729 . . . . . . 7  |-  x  e. 
_V
8 vex 2729 . . . . . . 7  |-  y  e. 
_V
97, 8xpex 4719 . . . . . 6  |-  ( x  X.  y )  e. 
_V
109rgen2w 2522 . . . . 5  |-  A. x  e.  J  A. y  e.  K  ( x  X.  y )  e.  _V
11 eqid 2165 . . . . . 6  |-  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )  =  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )
12 eleq2 2230 . . . . . . 7  |-  ( z  =  ( x  X.  y )  ->  (
p  e.  z  <->  p  e.  ( x  X.  y
) ) )
13 sseq1 3165 . . . . . . 7  |-  ( z  =  ( x  X.  y )  ->  (
z  C_  S  <->  ( x  X.  y )  C_  S
) )
1412, 13anbi12d 465 . . . . . 6  |-  ( z  =  ( x  X.  y )  ->  (
( p  e.  z  /\  z  C_  S
)  <->  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) ) )
1511, 14rexrnmpo 5957 . . . . 5  |-  ( A. x  e.  J  A. y  e.  K  (
x  X.  y )  e.  _V  ->  ( E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S )  <->  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) ) )
1610, 15ax-mp 5 . . . 4  |-  ( E. z  e.  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) ) ( p  e.  z  /\  z  C_  S )  <->  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) )
1716ralbii 2472 . . 3  |-  ( A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ( p  e.  z  /\  z  C_  S
)  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) )
186, 17bitrdi 195 . 2  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
193, 18bitrd 187 1  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   _Vcvv 2726    C_ wss 3116    X. cxp 4602   ran crn 4605   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   topGenctg 12571    tX ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-topgen 12577  df-tx 12893
This theorem is referenced by:  txdis  12917  txdis1cn  12918
  Copyright terms: Public domain W3C validator