ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltx Unicode version

Theorem eltx 14731
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
eltx  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
Distinct variable groups:    x, p, y, J    K, p, x, y    S, p, x, y
Allowed substitution hints:    V( x, y, p)    W( x, y, p)

Proof of Theorem eltx
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . . 4  |-  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) )  =  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) )
21txval 14727 . . 3  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ) )
32eleq2d 2275 . 2  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <-> 
S  e.  ( topGen ` 
ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ) ) )
41txbasex 14729 . . . 4  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )  e. 
_V )
5 eltg2b 14526 . . . 4  |-  ( ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) )  e.  _V  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S ) ) )
64, 5syl 14 . . 3  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S ) ) )
7 vex 2775 . . . . . . 7  |-  x  e. 
_V
8 vex 2775 . . . . . . 7  |-  y  e. 
_V
97, 8xpex 4790 . . . . . 6  |-  ( x  X.  y )  e. 
_V
109rgen2w 2562 . . . . 5  |-  A. x  e.  J  A. y  e.  K  ( x  X.  y )  e.  _V
11 eqid 2205 . . . . . 6  |-  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )  =  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) )
12 eleq2 2269 . . . . . . 7  |-  ( z  =  ( x  X.  y )  ->  (
p  e.  z  <->  p  e.  ( x  X.  y
) ) )
13 sseq1 3216 . . . . . . 7  |-  ( z  =  ( x  X.  y )  ->  (
z  C_  S  <->  ( x  X.  y )  C_  S
) )
1412, 13anbi12d 473 . . . . . 6  |-  ( z  =  ( x  X.  y )  ->  (
( p  e.  z  /\  z  C_  S
)  <->  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) ) )
1511, 14rexrnmpo 6061 . . . . 5  |-  ( A. x  e.  J  A. y  e.  K  (
x  X.  y )  e.  _V  ->  ( E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y
) ) ( p  e.  z  /\  z  C_  S )  <->  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) ) )
1610, 15ax-mp 5 . . . 4  |-  ( E. z  e.  ran  (
x  e.  J , 
y  e.  K  |->  ( x  X.  y ) ) ( p  e.  z  /\  z  C_  S )  <->  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y
)  /\  ( x  X.  y )  C_  S
) )
1716ralbii 2512 . . 3  |-  ( A. p  e.  S  E. z  e.  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) ( p  e.  z  /\  z  C_  S
)  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) )
186, 17bitrdi 196 . 2  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  (
topGen `  ran  ( x  e.  J ,  y  e.  K  |->  ( x  X.  y ) ) )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
193, 18bitrd 188 1  |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  (
x  X.  y )  /\  ( x  X.  y )  C_  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   _Vcvv 2772    C_ wss 3166    X. cxp 4673   ran crn 4676   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   topGenctg 13086    tX ctx 14724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-topgen 13092  df-tx 14725
This theorem is referenced by:  txdis  14749  txdis1cn  14750
  Copyright terms: Public domain W3C validator