| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txrest | Unicode version | ||
| Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txrest |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . . . . 6
| |
| 2 | 1 | txval 14760 |
. . . . 5
|
| 3 | 2 | adantr 276 |
. . . 4
|
| 4 | 3 | oveq1d 5961 |
. . 3
|
| 5 | 1 | txbasex 14762 |
. . . 4
|
| 6 | xpexg 4790 |
. . . 4
| |
| 7 | tgrest 14674 |
. . . 4
| |
| 8 | 5, 6, 7 | syl2an 289 |
. . 3
|
| 9 | elrest 13111 |
. . . . . . . 8
| |
| 10 | 5, 6, 9 | syl2an 289 |
. . . . . . 7
|
| 11 | vex 2775 |
. . . . . . . . . . 11
| |
| 12 | 11 | inex1 4179 |
. . . . . . . . . 10
|
| 13 | 12 | a1i 9 |
. . . . . . . . 9
|
| 14 | elrest 13111 |
. . . . . . . . . 10
| |
| 15 | 14 | ad2ant2r 509 |
. . . . . . . . 9
|
| 16 | xpeq1 4690 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eqeq2d 2217 |
. . . . . . . . . . 11
|
| 18 | 17 | rexbidv 2507 |
. . . . . . . . . 10
|
| 19 | vex 2775 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | inex1 4179 |
. . . . . . . . . . . 12
|
| 21 | 20 | a1i 9 |
. . . . . . . . . . 11
|
| 22 | elrest 13111 |
. . . . . . . . . . . 12
| |
| 23 | 22 | ad2ant2l 508 |
. . . . . . . . . . 11
|
| 24 | xpeq2 4691 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | eqeq2d 2217 |
. . . . . . . . . . . 12
|
| 26 | 25 | adantl 277 |
. . . . . . . . . . 11
|
| 27 | 21, 23, 26 | rexxfr2d 4513 |
. . . . . . . . . 10
|
| 28 | 18, 27 | sylan9bbr 463 |
. . . . . . . . 9
|
| 29 | 13, 15, 28 | rexxfr2d 4513 |
. . . . . . . 8
|
| 30 | 11, 19 | xpex 4791 |
. . . . . . . . . 10
|
| 31 | 30 | rgen2w 2562 |
. . . . . . . . 9
|
| 32 | eqid 2205 |
. . . . . . . . . 10
| |
| 33 | ineq1 3367 |
. . . . . . . . . . . 12
| |
| 34 | inxp 4813 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | eqtrdi 2254 |
. . . . . . . . . . 11
|
| 36 | 35 | eqeq2d 2217 |
. . . . . . . . . 10
|
| 37 | 32, 36 | rexrnmpo 6063 |
. . . . . . . . 9
|
| 38 | 31, 37 | ax-mp 5 |
. . . . . . . 8
|
| 39 | 29, 38 | bitr4di 198 |
. . . . . . 7
|
| 40 | 10, 39 | bitr4d 191 |
. . . . . 6
|
| 41 | 40 | abbi2dv 2324 |
. . . . 5
|
| 42 | eqid 2205 |
. . . . . 6
| |
| 43 | 42 | rnmpo 6058 |
. . . . 5
|
| 44 | 41, 43 | eqtr4di 2256 |
. . . 4
|
| 45 | 44 | fveq2d 5582 |
. . 3
|
| 46 | 4, 8, 45 | 3eqtr2d 2244 |
. 2
|
| 47 | restfn 13108 |
. . . 4
| |
| 48 | simpll 527 |
. . . . 5
| |
| 49 | 48 | elexd 2785 |
. . . 4
|
| 50 | simprl 529 |
. . . . 5
| |
| 51 | 50 | elexd 2785 |
. . . 4
|
| 52 | fnovex 5979 |
. . . 4
| |
| 53 | 47, 49, 51, 52 | mp3an2i 1355 |
. . 3
|
| 54 | simplr 528 |
. . . . 5
| |
| 55 | 54 | elexd 2785 |
. . . 4
|
| 56 | simprr 531 |
. . . . 5
| |
| 57 | 56 | elexd 2785 |
. . . 4
|
| 58 | fnovex 5979 |
. . . 4
| |
| 59 | 47, 55, 57, 58 | mp3an2i 1355 |
. . 3
|
| 60 | eqid 2205 |
. . . 4
| |
| 61 | 60 | txval 14760 |
. . 3
|
| 62 | 53, 59, 61 | syl2anc 411 |
. 2
|
| 63 | 46, 62 | eqtr4d 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-rest 13106 df-topgen 13125 df-tx 14758 |
| This theorem is referenced by: cnmpt2res 14802 limccnp2cntop 15182 |
| Copyright terms: Public domain | W3C validator |