Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txrest | Unicode version |
Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
txrest | ↾t ↾t ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . . . . 6 | |
2 | 1 | txval 12626 | . . . . 5 |
3 | 2 | adantr 274 | . . . 4 |
4 | 3 | oveq1d 5836 | . . 3 ↾t ↾t |
5 | 1 | txbasex 12628 | . . . 4 |
6 | xpexg 4699 | . . . 4 | |
7 | tgrest 12540 | . . . 4 ↾t ↾t | |
8 | 5, 6, 7 | syl2an 287 | . . 3 ↾t ↾t |
9 | elrest 12329 | . . . . . . . 8 ↾t | |
10 | 5, 6, 9 | syl2an 287 | . . . . . . 7 ↾t |
11 | vex 2715 | . . . . . . . . . . 11 | |
12 | 11 | inex1 4098 | . . . . . . . . . 10 |
13 | 12 | a1i 9 | . . . . . . . . 9 |
14 | elrest 12329 | . . . . . . . . . 10 ↾t | |
15 | 14 | ad2ant2r 501 | . . . . . . . . 9 ↾t |
16 | xpeq1 4599 | . . . . . . . . . . . 12 | |
17 | 16 | eqeq2d 2169 | . . . . . . . . . . 11 |
18 | 17 | rexbidv 2458 | . . . . . . . . . 10 ↾t ↾t |
19 | vex 2715 | . . . . . . . . . . . . 13 | |
20 | 19 | inex1 4098 | . . . . . . . . . . . 12 |
21 | 20 | a1i 9 | . . . . . . . . . . 11 |
22 | elrest 12329 | . . . . . . . . . . . 12 ↾t | |
23 | 22 | ad2ant2l 500 | . . . . . . . . . . 11 ↾t |
24 | xpeq2 4600 | . . . . . . . . . . . . 13 | |
25 | 24 | eqeq2d 2169 | . . . . . . . . . . . 12 |
26 | 25 | adantl 275 | . . . . . . . . . . 11 |
27 | 21, 23, 26 | rexxfr2d 4424 | . . . . . . . . . 10 ↾t |
28 | 18, 27 | sylan9bbr 459 | . . . . . . . . 9 ↾t |
29 | 13, 15, 28 | rexxfr2d 4424 | . . . . . . . 8 ↾t ↾t |
30 | 11, 19 | xpex 4700 | . . . . . . . . . 10 |
31 | 30 | rgen2w 2513 | . . . . . . . . 9 |
32 | eqid 2157 | . . . . . . . . . 10 | |
33 | ineq1 3301 | . . . . . . . . . . . 12 | |
34 | inxp 4719 | . . . . . . . . . . . 12 | |
35 | 33, 34 | eqtrdi 2206 | . . . . . . . . . . 11 |
36 | 35 | eqeq2d 2169 | . . . . . . . . . 10 |
37 | 32, 36 | rexrnmpo 5933 | . . . . . . . . 9 |
38 | 31, 37 | ax-mp 5 | . . . . . . . 8 |
39 | 29, 38 | bitr4di 197 | . . . . . . 7 ↾t ↾t |
40 | 10, 39 | bitr4d 190 | . . . . . 6 ↾t ↾t ↾t |
41 | 40 | abbi2dv 2276 | . . . . 5 ↾t ↾t ↾t |
42 | eqid 2157 | . . . . . 6 ↾t ↾t ↾t ↾t | |
43 | 42 | rnmpo 5928 | . . . . 5 ↾t ↾t ↾t ↾t |
44 | 41, 43 | eqtr4di 2208 | . . . 4 ↾t ↾t ↾t |
45 | 44 | fveq2d 5471 | . . 3 ↾t ↾t ↾t |
46 | 4, 8, 45 | 3eqtr2d 2196 | . 2 ↾t ↾t ↾t |
47 | restfn 12326 | . . . 4 ↾t | |
48 | simpll 519 | . . . . 5 | |
49 | 48 | elexd 2725 | . . . 4 |
50 | simprl 521 | . . . . 5 | |
51 | 50 | elexd 2725 | . . . 4 |
52 | fnovex 5851 | . . . 4 ↾t ↾t | |
53 | 47, 49, 51, 52 | mp3an2i 1324 | . . 3 ↾t |
54 | simplr 520 | . . . . 5 | |
55 | 54 | elexd 2725 | . . . 4 |
56 | simprr 522 | . . . . 5 | |
57 | 56 | elexd 2725 | . . . 4 |
58 | fnovex 5851 | . . . 4 ↾t ↾t | |
59 | 47, 55, 57, 58 | mp3an2i 1324 | . . 3 ↾t |
60 | eqid 2157 | . . . 4 ↾t ↾t ↾t ↾t | |
61 | 60 | txval 12626 | . . 3 ↾t ↾t ↾t ↾t ↾t ↾t |
62 | 53, 59, 61 | syl2anc 409 | . 2 ↾t ↾t ↾t ↾t |
63 | 46, 62 | eqtr4d 2193 | 1 ↾t ↾t ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 cab 2143 wral 2435 wrex 2436 cvv 2712 cin 3101 cxp 4583 crn 4586 wfn 5164 cfv 5169 (class class class)co 5821 cmpo 5823 ↾t crest 12322 ctg 12337 ctx 12623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-rest 12324 df-topgen 12343 df-tx 12624 |
This theorem is referenced by: cnmpt2res 12668 limccnp2cntop 13017 |
Copyright terms: Public domain | W3C validator |