| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txrest | Unicode version | ||
| Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txrest |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . . . . 6
| |
| 2 | 1 | txval 14842 |
. . . . 5
|
| 3 | 2 | adantr 276 |
. . . 4
|
| 4 | 3 | oveq1d 5982 |
. . 3
|
| 5 | 1 | txbasex 14844 |
. . . 4
|
| 6 | xpexg 4807 |
. . . 4
| |
| 7 | tgrest 14756 |
. . . 4
| |
| 8 | 5, 6, 7 | syl2an 289 |
. . 3
|
| 9 | elrest 13193 |
. . . . . . . 8
| |
| 10 | 5, 6, 9 | syl2an 289 |
. . . . . . 7
|
| 11 | vex 2779 |
. . . . . . . . . . 11
| |
| 12 | 11 | inex1 4194 |
. . . . . . . . . 10
|
| 13 | 12 | a1i 9 |
. . . . . . . . 9
|
| 14 | elrest 13193 |
. . . . . . . . . 10
| |
| 15 | 14 | ad2ant2r 509 |
. . . . . . . . 9
|
| 16 | xpeq1 4707 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eqeq2d 2219 |
. . . . . . . . . . 11
|
| 18 | 17 | rexbidv 2509 |
. . . . . . . . . 10
|
| 19 | vex 2779 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | inex1 4194 |
. . . . . . . . . . . 12
|
| 21 | 20 | a1i 9 |
. . . . . . . . . . 11
|
| 22 | elrest 13193 |
. . . . . . . . . . . 12
| |
| 23 | 22 | ad2ant2l 508 |
. . . . . . . . . . 11
|
| 24 | xpeq2 4708 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | eqeq2d 2219 |
. . . . . . . . . . . 12
|
| 26 | 25 | adantl 277 |
. . . . . . . . . . 11
|
| 27 | 21, 23, 26 | rexxfr2d 4530 |
. . . . . . . . . 10
|
| 28 | 18, 27 | sylan9bbr 463 |
. . . . . . . . 9
|
| 29 | 13, 15, 28 | rexxfr2d 4530 |
. . . . . . . 8
|
| 30 | 11, 19 | xpex 4808 |
. . . . . . . . . 10
|
| 31 | 30 | rgen2w 2564 |
. . . . . . . . 9
|
| 32 | eqid 2207 |
. . . . . . . . . 10
| |
| 33 | ineq1 3375 |
. . . . . . . . . . . 12
| |
| 34 | inxp 4830 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | eqtrdi 2256 |
. . . . . . . . . . 11
|
| 36 | 35 | eqeq2d 2219 |
. . . . . . . . . 10
|
| 37 | 32, 36 | rexrnmpo 6084 |
. . . . . . . . 9
|
| 38 | 31, 37 | ax-mp 5 |
. . . . . . . 8
|
| 39 | 29, 38 | bitr4di 198 |
. . . . . . 7
|
| 40 | 10, 39 | bitr4d 191 |
. . . . . 6
|
| 41 | 40 | abbi2dv 2326 |
. . . . 5
|
| 42 | eqid 2207 |
. . . . . 6
| |
| 43 | 42 | rnmpo 6079 |
. . . . 5
|
| 44 | 41, 43 | eqtr4di 2258 |
. . . 4
|
| 45 | 44 | fveq2d 5603 |
. . 3
|
| 46 | 4, 8, 45 | 3eqtr2d 2246 |
. 2
|
| 47 | restfn 13190 |
. . . 4
| |
| 48 | simpll 527 |
. . . . 5
| |
| 49 | 48 | elexd 2790 |
. . . 4
|
| 50 | simprl 529 |
. . . . 5
| |
| 51 | 50 | elexd 2790 |
. . . 4
|
| 52 | fnovex 6000 |
. . . 4
| |
| 53 | 47, 49, 51, 52 | mp3an2i 1355 |
. . 3
|
| 54 | simplr 528 |
. . . . 5
| |
| 55 | 54 | elexd 2790 |
. . . 4
|
| 56 | simprr 531 |
. . . . 5
| |
| 57 | 56 | elexd 2790 |
. . . 4
|
| 58 | fnovex 6000 |
. . . 4
| |
| 59 | 47, 55, 57, 58 | mp3an2i 1355 |
. . 3
|
| 60 | eqid 2207 |
. . . 4
| |
| 61 | 60 | txval 14842 |
. . 3
|
| 62 | 53, 59, 61 | syl2anc 411 |
. 2
|
| 63 | 46, 62 | eqtr4d 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-rest 13188 df-topgen 13207 df-tx 14840 |
| This theorem is referenced by: cnmpt2res 14884 limccnp2cntop 15264 |
| Copyright terms: Public domain | W3C validator |