Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txrest | Unicode version |
Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
txrest | ↾t ↾t ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . . . . 6 | |
2 | 1 | txval 12895 | . . . . 5 |
3 | 2 | adantr 274 | . . . 4 |
4 | 3 | oveq1d 5857 | . . 3 ↾t ↾t |
5 | 1 | txbasex 12897 | . . . 4 |
6 | xpexg 4718 | . . . 4 | |
7 | tgrest 12809 | . . . 4 ↾t ↾t | |
8 | 5, 6, 7 | syl2an 287 | . . 3 ↾t ↾t |
9 | elrest 12563 | . . . . . . . 8 ↾t | |
10 | 5, 6, 9 | syl2an 287 | . . . . . . 7 ↾t |
11 | vex 2729 | . . . . . . . . . . 11 | |
12 | 11 | inex1 4116 | . . . . . . . . . 10 |
13 | 12 | a1i 9 | . . . . . . . . 9 |
14 | elrest 12563 | . . . . . . . . . 10 ↾t | |
15 | 14 | ad2ant2r 501 | . . . . . . . . 9 ↾t |
16 | xpeq1 4618 | . . . . . . . . . . . 12 | |
17 | 16 | eqeq2d 2177 | . . . . . . . . . . 11 |
18 | 17 | rexbidv 2467 | . . . . . . . . . 10 ↾t ↾t |
19 | vex 2729 | . . . . . . . . . . . . 13 | |
20 | 19 | inex1 4116 | . . . . . . . . . . . 12 |
21 | 20 | a1i 9 | . . . . . . . . . . 11 |
22 | elrest 12563 | . . . . . . . . . . . 12 ↾t | |
23 | 22 | ad2ant2l 500 | . . . . . . . . . . 11 ↾t |
24 | xpeq2 4619 | . . . . . . . . . . . . 13 | |
25 | 24 | eqeq2d 2177 | . . . . . . . . . . . 12 |
26 | 25 | adantl 275 | . . . . . . . . . . 11 |
27 | 21, 23, 26 | rexxfr2d 4443 | . . . . . . . . . 10 ↾t |
28 | 18, 27 | sylan9bbr 459 | . . . . . . . . 9 ↾t |
29 | 13, 15, 28 | rexxfr2d 4443 | . . . . . . . 8 ↾t ↾t |
30 | 11, 19 | xpex 4719 | . . . . . . . . . 10 |
31 | 30 | rgen2w 2522 | . . . . . . . . 9 |
32 | eqid 2165 | . . . . . . . . . 10 | |
33 | ineq1 3316 | . . . . . . . . . . . 12 | |
34 | inxp 4738 | . . . . . . . . . . . 12 | |
35 | 33, 34 | eqtrdi 2215 | . . . . . . . . . . 11 |
36 | 35 | eqeq2d 2177 | . . . . . . . . . 10 |
37 | 32, 36 | rexrnmpo 5957 | . . . . . . . . 9 |
38 | 31, 37 | ax-mp 5 | . . . . . . . 8 |
39 | 29, 38 | bitr4di 197 | . . . . . . 7 ↾t ↾t |
40 | 10, 39 | bitr4d 190 | . . . . . 6 ↾t ↾t ↾t |
41 | 40 | abbi2dv 2285 | . . . . 5 ↾t ↾t ↾t |
42 | eqid 2165 | . . . . . 6 ↾t ↾t ↾t ↾t | |
43 | 42 | rnmpo 5952 | . . . . 5 ↾t ↾t ↾t ↾t |
44 | 41, 43 | eqtr4di 2217 | . . . 4 ↾t ↾t ↾t |
45 | 44 | fveq2d 5490 | . . 3 ↾t ↾t ↾t |
46 | 4, 8, 45 | 3eqtr2d 2204 | . 2 ↾t ↾t ↾t |
47 | restfn 12560 | . . . 4 ↾t | |
48 | simpll 519 | . . . . 5 | |
49 | 48 | elexd 2739 | . . . 4 |
50 | simprl 521 | . . . . 5 | |
51 | 50 | elexd 2739 | . . . 4 |
52 | fnovex 5875 | . . . 4 ↾t ↾t | |
53 | 47, 49, 51, 52 | mp3an2i 1332 | . . 3 ↾t |
54 | simplr 520 | . . . . 5 | |
55 | 54 | elexd 2739 | . . . 4 |
56 | simprr 522 | . . . . 5 | |
57 | 56 | elexd 2739 | . . . 4 |
58 | fnovex 5875 | . . . 4 ↾t ↾t | |
59 | 47, 55, 57, 58 | mp3an2i 1332 | . . 3 ↾t |
60 | eqid 2165 | . . . 4 ↾t ↾t ↾t ↾t | |
61 | 60 | txval 12895 | . . 3 ↾t ↾t ↾t ↾t ↾t ↾t |
62 | 53, 59, 61 | syl2anc 409 | . 2 ↾t ↾t ↾t ↾t |
63 | 46, 62 | eqtr4d 2201 | 1 ↾t ↾t ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 cin 3115 cxp 4602 crn 4605 wfn 5183 cfv 5188 (class class class)co 5842 cmpo 5844 ↾t crest 12556 ctg 12571 ctx 12892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-rest 12558 df-topgen 12577 df-tx 12893 |
This theorem is referenced by: cnmpt2res 12937 limccnp2cntop 13286 |
Copyright terms: Public domain | W3C validator |