Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txrest | Unicode version |
Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
txrest | ↾t ↾t ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . . . . 6 | |
2 | 1 | txval 13049 | . . . . 5 |
3 | 2 | adantr 274 | . . . 4 |
4 | 3 | oveq1d 5868 | . . 3 ↾t ↾t |
5 | 1 | txbasex 13051 | . . . 4 |
6 | xpexg 4725 | . . . 4 | |
7 | tgrest 12963 | . . . 4 ↾t ↾t | |
8 | 5, 6, 7 | syl2an 287 | . . 3 ↾t ↾t |
9 | elrest 12586 | . . . . . . . 8 ↾t | |
10 | 5, 6, 9 | syl2an 287 | . . . . . . 7 ↾t |
11 | vex 2733 | . . . . . . . . . . 11 | |
12 | 11 | inex1 4123 | . . . . . . . . . 10 |
13 | 12 | a1i 9 | . . . . . . . . 9 |
14 | elrest 12586 | . . . . . . . . . 10 ↾t | |
15 | 14 | ad2ant2r 506 | . . . . . . . . 9 ↾t |
16 | xpeq1 4625 | . . . . . . . . . . . 12 | |
17 | 16 | eqeq2d 2182 | . . . . . . . . . . 11 |
18 | 17 | rexbidv 2471 | . . . . . . . . . 10 ↾t ↾t |
19 | vex 2733 | . . . . . . . . . . . . 13 | |
20 | 19 | inex1 4123 | . . . . . . . . . . . 12 |
21 | 20 | a1i 9 | . . . . . . . . . . 11 |
22 | elrest 12586 | . . . . . . . . . . . 12 ↾t | |
23 | 22 | ad2ant2l 505 | . . . . . . . . . . 11 ↾t |
24 | xpeq2 4626 | . . . . . . . . . . . . 13 | |
25 | 24 | eqeq2d 2182 | . . . . . . . . . . . 12 |
26 | 25 | adantl 275 | . . . . . . . . . . 11 |
27 | 21, 23, 26 | rexxfr2d 4450 | . . . . . . . . . 10 ↾t |
28 | 18, 27 | sylan9bbr 460 | . . . . . . . . 9 ↾t |
29 | 13, 15, 28 | rexxfr2d 4450 | . . . . . . . 8 ↾t ↾t |
30 | 11, 19 | xpex 4726 | . . . . . . . . . 10 |
31 | 30 | rgen2w 2526 | . . . . . . . . 9 |
32 | eqid 2170 | . . . . . . . . . 10 | |
33 | ineq1 3321 | . . . . . . . . . . . 12 | |
34 | inxp 4745 | . . . . . . . . . . . 12 | |
35 | 33, 34 | eqtrdi 2219 | . . . . . . . . . . 11 |
36 | 35 | eqeq2d 2182 | . . . . . . . . . 10 |
37 | 32, 36 | rexrnmpo 5968 | . . . . . . . . 9 |
38 | 31, 37 | ax-mp 5 | . . . . . . . 8 |
39 | 29, 38 | bitr4di 197 | . . . . . . 7 ↾t ↾t |
40 | 10, 39 | bitr4d 190 | . . . . . 6 ↾t ↾t ↾t |
41 | 40 | abbi2dv 2289 | . . . . 5 ↾t ↾t ↾t |
42 | eqid 2170 | . . . . . 6 ↾t ↾t ↾t ↾t | |
43 | 42 | rnmpo 5963 | . . . . 5 ↾t ↾t ↾t ↾t |
44 | 41, 43 | eqtr4di 2221 | . . . 4 ↾t ↾t ↾t |
45 | 44 | fveq2d 5500 | . . 3 ↾t ↾t ↾t |
46 | 4, 8, 45 | 3eqtr2d 2209 | . 2 ↾t ↾t ↾t |
47 | restfn 12583 | . . . 4 ↾t | |
48 | simpll 524 | . . . . 5 | |
49 | 48 | elexd 2743 | . . . 4 |
50 | simprl 526 | . . . . 5 | |
51 | 50 | elexd 2743 | . . . 4 |
52 | fnovex 5886 | . . . 4 ↾t ↾t | |
53 | 47, 49, 51, 52 | mp3an2i 1337 | . . 3 ↾t |
54 | simplr 525 | . . . . 5 | |
55 | 54 | elexd 2743 | . . . 4 |
56 | simprr 527 | . . . . 5 | |
57 | 56 | elexd 2743 | . . . 4 |
58 | fnovex 5886 | . . . 4 ↾t ↾t | |
59 | 47, 55, 57, 58 | mp3an2i 1337 | . . 3 ↾t |
60 | eqid 2170 | . . . 4 ↾t ↾t ↾t ↾t | |
61 | 60 | txval 13049 | . . 3 ↾t ↾t ↾t ↾t ↾t ↾t |
62 | 53, 59, 61 | syl2anc 409 | . 2 ↾t ↾t ↾t ↾t |
63 | 46, 62 | eqtr4d 2206 | 1 ↾t ↾t ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 cvv 2730 cin 3120 cxp 4609 crn 4612 wfn 5193 cfv 5198 (class class class)co 5853 cmpo 5855 ↾t crest 12579 ctg 12594 ctx 13046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-rest 12581 df-topgen 12600 df-tx 13047 |
This theorem is referenced by: cnmpt2res 13091 limccnp2cntop 13440 |
Copyright terms: Public domain | W3C validator |