| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > txrest | Unicode version | ||
| Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| txrest | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. . . . . 6
 | |
| 2 | 1 | txval 14491 | 
. . . . 5
 | 
| 3 | 2 | adantr 276 | 
. . . 4
 | 
| 4 | 3 | oveq1d 5937 | 
. . 3
 | 
| 5 | 1 | txbasex 14493 | 
. . . 4
 | 
| 6 | xpexg 4777 | 
. . . 4
 | |
| 7 | tgrest 14405 | 
. . . 4
 | |
| 8 | 5, 6, 7 | syl2an 289 | 
. . 3
 | 
| 9 | elrest 12917 | 
. . . . . . . 8
 | |
| 10 | 5, 6, 9 | syl2an 289 | 
. . . . . . 7
 | 
| 11 | vex 2766 | 
. . . . . . . . . . 11
 | |
| 12 | 11 | inex1 4167 | 
. . . . . . . . . 10
 | 
| 13 | 12 | a1i 9 | 
. . . . . . . . 9
 | 
| 14 | elrest 12917 | 
. . . . . . . . . 10
 | |
| 15 | 14 | ad2ant2r 509 | 
. . . . . . . . 9
 | 
| 16 | xpeq1 4677 | 
. . . . . . . . . . . 12
 | |
| 17 | 16 | eqeq2d 2208 | 
. . . . . . . . . . 11
 | 
| 18 | 17 | rexbidv 2498 | 
. . . . . . . . . 10
 | 
| 19 | vex 2766 | 
. . . . . . . . . . . . 13
 | |
| 20 | 19 | inex1 4167 | 
. . . . . . . . . . . 12
 | 
| 21 | 20 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 22 | elrest 12917 | 
. . . . . . . . . . . 12
 | |
| 23 | 22 | ad2ant2l 508 | 
. . . . . . . . . . 11
 | 
| 24 | xpeq2 4678 | 
. . . . . . . . . . . . 13
 | |
| 25 | 24 | eqeq2d 2208 | 
. . . . . . . . . . . 12
 | 
| 26 | 25 | adantl 277 | 
. . . . . . . . . . 11
 | 
| 27 | 21, 23, 26 | rexxfr2d 4500 | 
. . . . . . . . . 10
 | 
| 28 | 18, 27 | sylan9bbr 463 | 
. . . . . . . . 9
 | 
| 29 | 13, 15, 28 | rexxfr2d 4500 | 
. . . . . . . 8
 | 
| 30 | 11, 19 | xpex 4778 | 
. . . . . . . . . 10
 | 
| 31 | 30 | rgen2w 2553 | 
. . . . . . . . 9
 | 
| 32 | eqid 2196 | 
. . . . . . . . . 10
 | |
| 33 | ineq1 3357 | 
. . . . . . . . . . . 12
 | |
| 34 | inxp 4800 | 
. . . . . . . . . . . 12
 | |
| 35 | 33, 34 | eqtrdi 2245 | 
. . . . . . . . . . 11
 | 
| 36 | 35 | eqeq2d 2208 | 
. . . . . . . . . 10
 | 
| 37 | 32, 36 | rexrnmpo 6038 | 
. . . . . . . . 9
 | 
| 38 | 31, 37 | ax-mp 5 | 
. . . . . . . 8
 | 
| 39 | 29, 38 | bitr4di 198 | 
. . . . . . 7
 | 
| 40 | 10, 39 | bitr4d 191 | 
. . . . . 6
 | 
| 41 | 40 | abbi2dv 2315 | 
. . . . 5
 | 
| 42 | eqid 2196 | 
. . . . . 6
 | |
| 43 | 42 | rnmpo 6033 | 
. . . . 5
 | 
| 44 | 41, 43 | eqtr4di 2247 | 
. . . 4
 | 
| 45 | 44 | fveq2d 5562 | 
. . 3
 | 
| 46 | 4, 8, 45 | 3eqtr2d 2235 | 
. 2
 | 
| 47 | restfn 12914 | 
. . . 4
 | |
| 48 | simpll 527 | 
. . . . 5
 | |
| 49 | 48 | elexd 2776 | 
. . . 4
 | 
| 50 | simprl 529 | 
. . . . 5
 | |
| 51 | 50 | elexd 2776 | 
. . . 4
 | 
| 52 | fnovex 5955 | 
. . . 4
 | |
| 53 | 47, 49, 51, 52 | mp3an2i 1353 | 
. . 3
 | 
| 54 | simplr 528 | 
. . . . 5
 | |
| 55 | 54 | elexd 2776 | 
. . . 4
 | 
| 56 | simprr 531 | 
. . . . 5
 | |
| 57 | 56 | elexd 2776 | 
. . . 4
 | 
| 58 | fnovex 5955 | 
. . . 4
 | |
| 59 | 47, 55, 57, 58 | mp3an2i 1353 | 
. . 3
 | 
| 60 | eqid 2196 | 
. . . 4
 | |
| 61 | 60 | txval 14491 | 
. . 3
 | 
| 62 | 53, 59, 61 | syl2anc 411 | 
. 2
 | 
| 63 | 46, 62 | eqtr4d 2232 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-rest 12912 df-topgen 12931 df-tx 14489 | 
| This theorem is referenced by: cnmpt2res 14533 limccnp2cntop 14913 | 
| Copyright terms: Public domain | W3C validator |