ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txrest Unicode version

Theorem txrest 12445
Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txrest  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( Rt  A ) 
tX  ( St  B ) ) )

Proof of Theorem txrest
Dummy variables  s  r  u  v  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . . . 6  |-  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) )  =  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) )
21txval 12424 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S
)  =  ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ) )
32adantr 274 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( R  tX  S
)  =  ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ) )
43oveq1d 5789 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( topGen `  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) )t  ( A  X.  B ) ) )
51txbasex 12426 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  e. 
_V )
6 xpexg 4653 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( A  X.  B
)  e.  _V )
7 tgrest 12338 . . . 4  |-  ( ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  e. 
_V  /\  ( A  X.  B )  e.  _V )  ->  ( topGen `  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) )t  ( A  X.  B ) ) )  =  ( ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) )t  ( A  X.  B ) ) )
85, 6, 7syl2an 287 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( topGen `  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) )t  ( A  X.  B ) ) )  =  ( ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) )t  ( A  X.  B ) ) )
9 elrest 12127 . . . . . . . 8  |-  ( ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  e. 
_V  /\  ( A  X.  B )  e.  _V )  ->  ( x  e.  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  <->  E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) ) ) )
105, 6, 9syl2an 287 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( x  e.  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  <->  E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) ) ) )
11 vex 2689 . . . . . . . . . . 11  |-  r  e. 
_V
1211inex1 4062 . . . . . . . . . 10  |-  ( r  i^i  A )  e. 
_V
1312a1i 9 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  r  e.  R )  ->  (
r  i^i  A )  e.  _V )
14 elrest 12127 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  A  e.  X )  ->  ( u  e.  ( Rt  A )  <->  E. r  e.  R  u  =  ( r  i^i  A
) ) )
1514ad2ant2r 500 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( u  e.  ( Rt  A )  <->  E. r  e.  R  u  =  ( r  i^i  A
) ) )
16 xpeq1 4553 . . . . . . . . . . . 12  |-  ( u  =  ( r  i^i 
A )  ->  (
u  X.  v )  =  ( ( r  i^i  A )  X.  v ) )
1716eqeq2d 2151 . . . . . . . . . . 11  |-  ( u  =  ( r  i^i 
A )  ->  (
x  =  ( u  X.  v )  <->  x  =  ( ( r  i^i 
A )  X.  v
) ) )
1817rexbidv 2438 . . . . . . . . . 10  |-  ( u  =  ( r  i^i 
A )  ->  ( E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. v  e.  ( St  B ) x  =  ( ( r  i^i 
A )  X.  v
) ) )
19 vex 2689 . . . . . . . . . . . . 13  |-  s  e. 
_V
2019inex1 4062 . . . . . . . . . . . 12  |-  ( s  i^i  B )  e. 
_V
2120a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  s  e.  S )  ->  (
s  i^i  B )  e.  _V )
22 elrest 12127 . . . . . . . . . . . 12  |-  ( ( S  e.  W  /\  B  e.  Y )  ->  ( v  e.  ( St  B )  <->  E. s  e.  S  v  =  ( s  i^i  B
) ) )
2322ad2ant2l 499 . . . . . . . . . . 11  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( v  e.  ( St  B )  <->  E. s  e.  S  v  =  ( s  i^i  B
) ) )
24 xpeq2 4554 . . . . . . . . . . . . 13  |-  ( v  =  ( s  i^i 
B )  ->  (
( r  i^i  A
)  X.  v )  =  ( ( r  i^i  A )  X.  ( s  i^i  B
) ) )
2524eqeq2d 2151 . . . . . . . . . . . 12  |-  ( v  =  ( s  i^i 
B )  ->  (
x  =  ( ( r  i^i  A )  X.  v )  <->  x  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) ) )
2625adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  v  =  ( s  i^i  B
) )  ->  (
x  =  ( ( r  i^i  A )  X.  v )  <->  x  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) ) )
2721, 23, 26rexxfr2d 4386 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( E. v  e.  ( St  B ) x  =  ( ( r  i^i 
A )  X.  v
)  <->  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
2818, 27sylan9bbr 458 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  u  =  ( r  i^i  A
) )  ->  ( E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
2913, 15, 28rexxfr2d 4386 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. r  e.  R  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
3011, 19xpex 4654 . . . . . . . . . 10  |-  ( r  X.  s )  e. 
_V
3130rgen2w 2488 . . . . . . . . 9  |-  A. r  e.  R  A. s  e.  S  ( r  X.  s )  e.  _V
32 eqid 2139 . . . . . . . . . 10  |-  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  =  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )
33 ineq1 3270 . . . . . . . . . . . 12  |-  ( w  =  ( r  X.  s )  ->  (
w  i^i  ( A  X.  B ) )  =  ( ( r  X.  s )  i^i  ( A  X.  B ) ) )
34 inxp 4673 . . . . . . . . . . . 12  |-  ( ( r  X.  s )  i^i  ( A  X.  B ) )  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
)
3533, 34syl6eq 2188 . . . . . . . . . . 11  |-  ( w  =  ( r  X.  s )  ->  (
w  i^i  ( A  X.  B ) )  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) )
3635eqeq2d 2151 . . . . . . . . . 10  |-  ( w  =  ( r  X.  s )  ->  (
x  =  ( w  i^i  ( A  X.  B ) )  <->  x  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) ) )
3732, 36rexrnmpo 5886 . . . . . . . . 9  |-  ( A. r  e.  R  A. s  e.  S  (
r  X.  s )  e.  _V  ->  ( E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) )  <->  E. r  e.  R  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
3831, 37ax-mp 5 . . . . . . . 8  |-  ( E. w  e.  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) ) x  =  ( w  i^i  ( A  X.  B ) )  <->  E. r  e.  R  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) )
3929, 38syl6bbr 197 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) ) ) )
4010, 39bitr4d 190 . . . . . 6  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( x  e.  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  <->  E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
) ) )
4140abbi2dv 2258 . . . . 5  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  =  { x  |  E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
) } )
42 eqid 2139 . . . . . 6  |-  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )  =  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B ) 
|->  ( u  X.  v
) )
4342rnmpo 5881 . . . . 5  |-  ran  (
u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )  =  { x  |  E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
) }
4441, 43syl6eqr 2190 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  =  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) )
4544fveq2d 5425 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( topGen `  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) )t  ( A  X.  B ) ) )  =  ( topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B ) 
|->  ( u  X.  v
) ) ) )
464, 8, 453eqtr2d 2178 . 2  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) ) )
47 restfn 12124 . . . 4  |-t  Fn  ( _V  X.  _V )
48 simpll 518 . . . . 5  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  ->  R  e.  V )
4948elexd 2699 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  ->  R  e.  _V )
50 simprl 520 . . . . 5  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  ->  A  e.  X )
5150elexd 2699 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  ->  A  e.  _V )
52 fnovex 5804 . . . 4  |-  ( (t  Fn  ( _V  X.  _V )  /\  R  e.  _V  /\  A  e.  _V )  ->  ( Rt  A )  e.  _V )
5347, 49, 51, 52mp3an2i 1320 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( Rt  A )  e.  _V )
54 simplr 519 . . . . 5  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  ->  S  e.  W )
5554elexd 2699 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  ->  S  e.  _V )
56 simprr 521 . . . . 5  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  ->  B  e.  Y )
5756elexd 2699 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  ->  B  e.  _V )
58 fnovex 5804 . . . 4  |-  ( (t  Fn  ( _V  X.  _V )  /\  S  e.  _V  /\  B  e.  _V )  ->  ( St  B )  e.  _V )
5947, 55, 57, 58mp3an2i 1320 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( St  B )  e.  _V )
60 eqid 2139 . . . 4  |-  ran  (
u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )  =  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )
6160txval 12424 . . 3  |-  ( ( ( Rt  A )  e.  _V  /\  ( St  B )  e.  _V )  ->  ( ( Rt  A )  tX  ( St  B ) )  =  (
topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) ) )
6253, 59, 61syl2anc 408 . 2  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( Rt  A ) 
tX  ( St  B ) )  =  ( topGen ` 
ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B ) 
|->  ( u  X.  v
) ) ) )
6346, 62eqtr4d 2175 1  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( Rt  A ) 
tX  ( St  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   _Vcvv 2686    i^i cin 3070    X. cxp 4537   ran crn 4540    Fn wfn 5118   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   ↾t crest 12120   topGenctg 12135    tX ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-rest 12122  df-topgen 12141  df-tx 12422
This theorem is referenced by:  cnmpt2res  12466  limccnp2cntop  12815
  Copyright terms: Public domain W3C validator