| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txrest | Unicode version | ||
| Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txrest |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . . . 6
| |
| 2 | 1 | txval 14929 |
. . . . 5
|
| 3 | 2 | adantr 276 |
. . . 4
|
| 4 | 3 | oveq1d 6016 |
. . 3
|
| 5 | 1 | txbasex 14931 |
. . . 4
|
| 6 | xpexg 4833 |
. . . 4
| |
| 7 | tgrest 14843 |
. . . 4
| |
| 8 | 5, 6, 7 | syl2an 289 |
. . 3
|
| 9 | elrest 13279 |
. . . . . . . 8
| |
| 10 | 5, 6, 9 | syl2an 289 |
. . . . . . 7
|
| 11 | vex 2802 |
. . . . . . . . . . 11
| |
| 12 | 11 | inex1 4218 |
. . . . . . . . . 10
|
| 13 | 12 | a1i 9 |
. . . . . . . . 9
|
| 14 | elrest 13279 |
. . . . . . . . . 10
| |
| 15 | 14 | ad2ant2r 509 |
. . . . . . . . 9
|
| 16 | xpeq1 4733 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eqeq2d 2241 |
. . . . . . . . . . 11
|
| 18 | 17 | rexbidv 2531 |
. . . . . . . . . 10
|
| 19 | vex 2802 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | inex1 4218 |
. . . . . . . . . . . 12
|
| 21 | 20 | a1i 9 |
. . . . . . . . . . 11
|
| 22 | elrest 13279 |
. . . . . . . . . . . 12
| |
| 23 | 22 | ad2ant2l 508 |
. . . . . . . . . . 11
|
| 24 | xpeq2 4734 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | eqeq2d 2241 |
. . . . . . . . . . . 12
|
| 26 | 25 | adantl 277 |
. . . . . . . . . . 11
|
| 27 | 21, 23, 26 | rexxfr2d 4556 |
. . . . . . . . . 10
|
| 28 | 18, 27 | sylan9bbr 463 |
. . . . . . . . 9
|
| 29 | 13, 15, 28 | rexxfr2d 4556 |
. . . . . . . 8
|
| 30 | 11, 19 | xpex 4834 |
. . . . . . . . . 10
|
| 31 | 30 | rgen2w 2586 |
. . . . . . . . 9
|
| 32 | eqid 2229 |
. . . . . . . . . 10
| |
| 33 | ineq1 3398 |
. . . . . . . . . . . 12
| |
| 34 | inxp 4856 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | eqtrdi 2278 |
. . . . . . . . . . 11
|
| 36 | 35 | eqeq2d 2241 |
. . . . . . . . . 10
|
| 37 | 32, 36 | rexrnmpo 6120 |
. . . . . . . . 9
|
| 38 | 31, 37 | ax-mp 5 |
. . . . . . . 8
|
| 39 | 29, 38 | bitr4di 198 |
. . . . . . 7
|
| 40 | 10, 39 | bitr4d 191 |
. . . . . 6
|
| 41 | 40 | abbi2dv 2348 |
. . . . 5
|
| 42 | eqid 2229 |
. . . . . 6
| |
| 43 | 42 | rnmpo 6115 |
. . . . 5
|
| 44 | 41, 43 | eqtr4di 2280 |
. . . 4
|
| 45 | 44 | fveq2d 5631 |
. . 3
|
| 46 | 4, 8, 45 | 3eqtr2d 2268 |
. 2
|
| 47 | restfn 13276 |
. . . 4
| |
| 48 | simpll 527 |
. . . . 5
| |
| 49 | 48 | elexd 2813 |
. . . 4
|
| 50 | simprl 529 |
. . . . 5
| |
| 51 | 50 | elexd 2813 |
. . . 4
|
| 52 | fnovex 6034 |
. . . 4
| |
| 53 | 47, 49, 51, 52 | mp3an2i 1376 |
. . 3
|
| 54 | simplr 528 |
. . . . 5
| |
| 55 | 54 | elexd 2813 |
. . . 4
|
| 56 | simprr 531 |
. . . . 5
| |
| 57 | 56 | elexd 2813 |
. . . 4
|
| 58 | fnovex 6034 |
. . . 4
| |
| 59 | 47, 55, 57, 58 | mp3an2i 1376 |
. . 3
|
| 60 | eqid 2229 |
. . . 4
| |
| 61 | 60 | txval 14929 |
. . 3
|
| 62 | 53, 59, 61 | syl2anc 411 |
. 2
|
| 63 | 46, 62 | eqtr4d 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-rest 13274 df-topgen 13293 df-tx 14927 |
| This theorem is referenced by: cnmpt2res 14971 limccnp2cntop 15351 |
| Copyright terms: Public domain | W3C validator |