ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzf Unicode version

Theorem fzf 10078
Description: Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
fzf  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ

Proof of Theorem fzf
Dummy variables  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3264 . . . 4  |-  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } 
C_  ZZ
2 zex 9326 . . . . 5  |-  ZZ  e.  _V
32elpw2 4186 . . . 4  |-  ( { k  e.  ZZ  | 
( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ  <->  { k  e.  ZZ  | 
( m  <_  k  /\  k  <_  n ) }  C_  ZZ )
41, 3mpbir 146 . . 3  |-  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ
54rgen2w 2550 . 2  |-  A. m  e.  ZZ  A. n  e.  ZZ  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ
6 df-fz 10075 . . 3  |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_ 
k  /\  k  <_  n ) } )
76fmpo 6254 . 2  |-  ( A. m  e.  ZZ  A. n  e.  ZZ  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ  <->  ... : ( ZZ 
X.  ZZ ) --> ~P ZZ )
85, 7mpbi 145 1  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2164   A.wral 2472   {crab 2476    C_ wss 3153   ~Pcpw 3601   class class class wbr 4029    X. cxp 4657   -->wf 5250    <_ cle 8055   ZZcz 9317   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-neg 8193  df-z 9318  df-fz 10075
This theorem is referenced by:  fzen  10109  fzof  10210  fzoval  10214
  Copyright terms: Public domain W3C validator