ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxf Unicode version

Theorem ixxf 10022
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Hypothesis
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
ixxf  |-  O :
( RR*  X.  RR* ) --> ~P RR*
Distinct variable groups:    x, y, z, R    x, S, y, z
Allowed substitution hints:    O( x, y, z)

Proof of Theorem ixxf
StepHypRef Expression
1 ssrab2 3278 . . . 4  |-  { z  e.  RR*  |  (
x R z  /\  z S y ) } 
C_  RR*
2 xrex 9980 . . . . 5  |-  RR*  e.  _V
32elpw2 4202 . . . 4  |-  ( { z  e.  RR*  |  ( x R z  /\  z S y ) }  e.  ~P RR*  <->  { z  e.  RR*  |  ( x R z  /\  z S y ) } 
C_  RR* )
41, 3mpbir 146 . . 3  |-  { z  e.  RR*  |  (
x R z  /\  z S y ) }  e.  ~P RR*
54rgen2w 2562 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  { z  e.  RR*  |  ( x R z  /\  z S y ) }  e.  ~P RR*
6 ixx.1 . . 3  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
76fmpo 6289 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  { z  e. 
RR*  |  ( x R z  /\  z S y ) }  e.  ~P RR*  <->  O :
( RR*  X.  RR* ) --> ~P RR* )
85, 7mpbi 145 1  |-  O :
( RR*  X.  RR* ) --> ~P RR*
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488    C_ wss 3166   ~Pcpw 3616   class class class wbr 4045    X. cxp 4674   -->wf 5268    e. cmpo 5948   RR*cxr 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-pnf 8111  df-mnf 8112  df-xr 8113
This theorem is referenced by:  ixxex  10023  ixxssxr  10024  iccf  10096
  Copyright terms: Public domain W3C validator