ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpoi Unicode version

Theorem fnmpoi 6207
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypotheses
Ref Expression
fmpo.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
fnmpoi.2  |-  C  e. 
_V
Assertion
Ref Expression
fnmpoi  |-  F  Fn  ( A  X.  B
)
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    F( x, y)

Proof of Theorem fnmpoi
StepHypRef Expression
1 fnmpoi.2 . . 3  |-  C  e. 
_V
21rgen2w 2533 . 2  |-  A. x  e.  A  A. y  e.  B  C  e.  _V
3 fmpo.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43fnmpo 6205 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  _V  ->  F  Fn  ( A  X.  B
) )
52, 4ax-mp 5 1  |-  F  Fn  ( A  X.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739    X. cxp 4626    Fn wfn 5213    e. cmpo 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144
This theorem is referenced by:  dmmpo  6208  fnoa  6450  fnom  6453  fnoei  6455  fnmap  6657  fnpm  6658  restfn  12697
  Copyright terms: Public domain W3C validator