ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpoi Unicode version

Theorem fnmpoi 6347
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypotheses
Ref Expression
fmpo.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
fnmpoi.2  |-  C  e. 
_V
Assertion
Ref Expression
fnmpoi  |-  F  Fn  ( A  X.  B
)
Distinct variable groups:    x, A, y   
x, B, y
Allowed substitution hints:    C( x, y)    F( x, y)

Proof of Theorem fnmpoi
StepHypRef Expression
1 fnmpoi.2 . . 3  |-  C  e. 
_V
21rgen2w 2586 . 2  |-  A. x  e.  A  A. y  e.  B  C  e.  _V
3 fmpo.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43fnmpo 6346 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  _V  ->  F  Fn  ( A  X.  B
) )
52, 4ax-mp 5 1  |-  F  Fn  ( A  X.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    X. cxp 4716    Fn wfn 5312    e. cmpo 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285
This theorem is referenced by:  dmmpo  6348  fnoa  6591  fnom  6594  fnoei  6596  fnmap  6800  fnpm  6801  restfn  13271  fngsum  13416  fnpsr  14625  fnmpl  14651
  Copyright terms: Public domain W3C validator