ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotav Unicode version

Theorem riotav 5814
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav  |-  ( iota_ x  e.  _V  ph )  =  ( iota x ph )

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 5809 . 2  |-  ( iota_ x  e.  _V  ph )  =  ( iota x
( x  e.  _V  /\ 
ph ) )
2 vex 2733 . . . 4  |-  x  e. 
_V
32biantrur 301 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43iotabii 5182 . 2  |-  ( iota
x ph )  =  ( iota x ( x  e.  _V  /\  ph ) )
51, 4eqtr4i 2194 1  |-  ( iota_ x  e.  _V  ph )  =  ( iota x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730   iotacio 5158   iota_crio 5808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-uni 3797  df-iota 5160  df-riota 5809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator