ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotav Unicode version

Theorem riotav 5928
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav  |-  ( iota_ x  e.  _V  ph )  =  ( iota x ph )

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 5922 . 2  |-  ( iota_ x  e.  _V  ph )  =  ( iota x
( x  e.  _V  /\ 
ph ) )
2 vex 2779 . . . 4  |-  x  e. 
_V
32biantrur 303 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43iotabii 5274 . 2  |-  ( iota
x ph )  =  ( iota x ( x  e.  _V  /\  ph ) )
51, 4eqtr4i 2231 1  |-  ( iota_ x  e.  _V  ph )  =  ( iota x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   iotacio 5249   iota_crio 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-uni 3865  df-iota 5251  df-riota 5922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator