ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotav Unicode version

Theorem riotav 5689
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav  |-  ( iota_ x  e.  _V  ph )  =  ( iota x ph )

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 5684 . 2  |-  ( iota_ x  e.  _V  ph )  =  ( iota x
( x  e.  _V  /\ 
ph ) )
2 vex 2660 . . . 4  |-  x  e. 
_V
32biantrur 299 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43iotabii 5068 . 2  |-  ( iota
x ph )  =  ( iota x ( x  e.  _V  /\  ph ) )
51, 4eqtr4i 2138 1  |-  ( iota_ x  e.  _V  ph )  =  ( iota x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1314    e. wcel 1463   _Vcvv 2657   iotacio 5044   iota_crio 5683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-rex 2396  df-v 2659  df-uni 3703  df-iota 5046  df-riota 5684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator