ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotav Unicode version

Theorem riotav 5879
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav  |-  ( iota_ x  e.  _V  ph )  =  ( iota x ph )

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 5873 . 2  |-  ( iota_ x  e.  _V  ph )  =  ( iota x
( x  e.  _V  /\ 
ph ) )
2 vex 2763 . . . 4  |-  x  e. 
_V
32biantrur 303 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43iotabii 5238 . 2  |-  ( iota
x ph )  =  ( iota x ( x  e.  _V  /\  ph ) )
51, 4eqtr4i 2217 1  |-  ( iota_ x  e.  _V  ph )  =  ( iota x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   iotacio 5213   iota_crio 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-uni 3836  df-iota 5215  df-riota 5873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator