Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotav Unicode version

Theorem riotav 5742
 Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 5737 . 2
2 vex 2692 . . . 4
32biantrur 301 . . 3
43iotabii 5117 . 2
51, 4eqtr4i 2164 1
 Colors of variables: wff set class Syntax hints:   wa 103   wceq 1332   wcel 1481  cvv 2689  cio 5093  crio 5736 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-v 2691  df-uni 3744  df-iota 5095  df-riota 5737 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator