ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaexg Unicode version

Theorem riotaexg 5838
Description: Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)
Assertion
Ref Expression
riotaexg  |-  ( A  e.  V  ->  ( iota_ x  e.  A  ps )  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ps( x)    V( x)

Proof of Theorem riotaexg
StepHypRef Expression
1 df-riota 5834 . 2  |-  ( iota_ x  e.  A  ps )  =  ( iota x
( x  e.  A  /\  ps ) )
2 uniexg 4441 . . 3  |-  ( A  e.  V  ->  U. A  e.  _V )
3 iotass 5197 . . . . 5  |-  ( A. x ( ( x  e.  A  /\  ps )  ->  x  C_  U. A
)  ->  ( iota x ( x  e.  A  /\  ps )
)  C_  U. A )
4 elssuni 3839 . . . . . 6  |-  ( x  e.  A  ->  x  C_ 
U. A )
54adantr 276 . . . . 5  |-  ( ( x  e.  A  /\  ps )  ->  x  C_  U. A )
63, 5mpg 1451 . . . 4  |-  ( iota
x ( x  e.  A  /\  ps )
)  C_  U. A
76a1i 9 . . 3  |-  ( A  e.  V  ->  ( iota x ( x  e.  A  /\  ps )
)  C_  U. A )
82, 7ssexd 4145 . 2  |-  ( A  e.  V  ->  ( iota x ( x  e.  A  /\  ps )
)  e.  _V )
91, 8eqeltrid 2264 1  |-  ( A  e.  V  ->  ( iota_ x  e.  A  ps )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   _Vcvv 2739    C_ wss 3131   U.cuni 3811   iotacio 5178   iota_crio 5833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-iota 5180  df-riota 5834
This theorem is referenced by:  flval  10275  sqrtrval  11012  qnumval  12188  qdenval  12189  grpidvalg  12798  fn0g  12800  grpinvval  12922  grpinvfng  12923
  Copyright terms: Public domain W3C validator