ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaexg Unicode version

Theorem riotaexg 5958
Description: Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)
Assertion
Ref Expression
riotaexg  |-  ( A  e.  V  ->  ( iota_ x  e.  A  ps )  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ps( x)    V( x)

Proof of Theorem riotaexg
StepHypRef Expression
1 df-riota 5954 . 2  |-  ( iota_ x  e.  A  ps )  =  ( iota x
( x  e.  A  /\  ps ) )
2 uniexg 4530 . . 3  |-  ( A  e.  V  ->  U. A  e.  _V )
3 iotass 5296 . . . . 5  |-  ( A. x ( ( x  e.  A  /\  ps )  ->  x  C_  U. A
)  ->  ( iota x ( x  e.  A  /\  ps )
)  C_  U. A )
4 elssuni 3916 . . . . . 6  |-  ( x  e.  A  ->  x  C_ 
U. A )
54adantr 276 . . . . 5  |-  ( ( x  e.  A  /\  ps )  ->  x  C_  U. A )
63, 5mpg 1497 . . . 4  |-  ( iota
x ( x  e.  A  /\  ps )
)  C_  U. A
76a1i 9 . . 3  |-  ( A  e.  V  ->  ( iota x ( x  e.  A  /\  ps )
)  C_  U. A )
82, 7ssexd 4224 . 2  |-  ( A  e.  V  ->  ( iota x ( x  e.  A  /\  ps )
)  e.  _V )
91, 8eqeltrid 2316 1  |-  ( A  e.  V  ->  ( iota_ x  e.  A  ps )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   _Vcvv 2799    C_ wss 3197   U.cuni 3888   iotacio 5276   iota_crio 5953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-iota 5278  df-riota 5954
This theorem is referenced by:  iotaexel  5959  flval  10492  sqrtrval  11511  qnumval  12707  qdenval  12708  grpidvalg  13406  fn0g  13408  grpinvval  13576  grpinvfng  13577  usgredg2v  16022
  Copyright terms: Public domain W3C validator