ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaexg Unicode version

Theorem riotaexg 5884
Description: Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)
Assertion
Ref Expression
riotaexg  |-  ( A  e.  V  ->  ( iota_ x  e.  A  ps )  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ps( x)    V( x)

Proof of Theorem riotaexg
StepHypRef Expression
1 df-riota 5880 . 2  |-  ( iota_ x  e.  A  ps )  =  ( iota x
( x  e.  A  /\  ps ) )
2 uniexg 4475 . . 3  |-  ( A  e.  V  ->  U. A  e.  _V )
3 iotass 5237 . . . . 5  |-  ( A. x ( ( x  e.  A  /\  ps )  ->  x  C_  U. A
)  ->  ( iota x ( x  e.  A  /\  ps )
)  C_  U. A )
4 elssuni 3868 . . . . . 6  |-  ( x  e.  A  ->  x  C_ 
U. A )
54adantr 276 . . . . 5  |-  ( ( x  e.  A  /\  ps )  ->  x  C_  U. A )
63, 5mpg 1465 . . . 4  |-  ( iota
x ( x  e.  A  /\  ps )
)  C_  U. A
76a1i 9 . . 3  |-  ( A  e.  V  ->  ( iota x ( x  e.  A  /\  ps )
)  C_  U. A )
82, 7ssexd 4174 . 2  |-  ( A  e.  V  ->  ( iota x ( x  e.  A  /\  ps )
)  e.  _V )
91, 8eqeltrid 2283 1  |-  ( A  e.  V  ->  ( iota_ x  e.  A  ps )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   _Vcvv 2763    C_ wss 3157   U.cuni 3840   iotacio 5218   iota_crio 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-iota 5220  df-riota 5880
This theorem is referenced by:  iotaexel  5885  flval  10379  sqrtrval  11182  qnumval  12378  qdenval  12379  grpidvalg  13075  fn0g  13077  grpinvval  13245  grpinvfng  13246
  Copyright terms: Public domain W3C validator