ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabii Unicode version

Theorem iotabii 5182
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
iotabii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
iotabii  |-  ( iota
x ph )  =  ( iota x ps )

Proof of Theorem iotabii
StepHypRef Expression
1 iotabi 5169 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )
2 iotabii.1 . 2  |-  ( ph  <->  ps )
31, 2mpg 1444 1  |-  ( iota
x ph )  =  ( iota x ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348   iotacio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-uni 3797  df-iota 5160
This theorem is referenced by:  riotav  5814  cbvsum  11323  cbvprod  11521
  Copyright terms: Public domain W3C validator