![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riotav | GIF version |
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
riotav | ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 5874 | . 2 ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 303 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | iotabii 5239 | . 2 ⊢ (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | eqtr4i 2217 | 1 ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ℩cio 5214 ℩crio 5873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-uni 3837 df-iota 5216 df-riota 5874 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |