ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotav GIF version

Theorem riotav 5803
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 5798 . 2 (𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 2729 . . . 4 𝑥 ∈ V
32biantrur 301 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43iotabii 5175 . 2 (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4eqtr4i 2189 1 (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  cio 5151  crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-uni 3790  df-iota 5153  df-riota 5798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator