| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotav | GIF version | ||
| Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotav | ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 5954 | . 2 ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑)) | |
| 2 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur 303 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
| 4 | 3 | iotabii 5302 | . 2 ⊢ (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑)) |
| 5 | 1, 4 | eqtr4i 2253 | 1 ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ℩cio 5276 ℩crio 5953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-uni 3889 df-iota 5278 df-riota 5954 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |