ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotav GIF version

Theorem riotav 5814
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 5809 . 2 (𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 2733 . . . 4 𝑥 ∈ V
32biantrur 301 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43iotabii 5182 . 2 (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4eqtr4i 2194 1 (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  cio 5158  crio 5808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-uni 3797  df-iota 5160  df-riota 5809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator