ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2i Unicode version

Theorem rmo2i 3080
Description: Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1  |-  F/ y
ph
Assertion
Ref Expression
rmo2i  |-  ( E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem rmo2i
StepHypRef Expression
1 rexex 2543 . 2  |-  ( E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y )  ->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
2 rmo2.1 . . 3  |-  F/ y
ph
32rmo2ilem 3079 . 2  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
41, 3syl 14 1  |-  ( E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   F/wnf 1474   E.wex 1506   A.wral 2475   E.wrex 2476   E*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-ral 2480  df-rex 2481  df-rmo 2483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator