| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rmo2i | GIF version | ||
| Description: Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmo2.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| rmo2i | ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexex 2543 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) | |
| 2 | rmo2.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | 2 | rmo2ilem 3079 | . 2 ⊢ (∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
| 4 | 1, 3 | syl 14 | 1 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 Ⅎwnf 1474 ∃wex 1506 ∀wral 2475 ∃wrex 2476 ∃*wrmo 2478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-ral 2480 df-rex 2481 df-rmo 2483 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |