ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2i GIF version

Theorem rmo2i 3080
Description: Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1 𝑦𝜑
Assertion
Ref Expression
rmo2i (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rmo2i
StepHypRef Expression
1 rexex 2543 . 2 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
2 rmo2.1 . . 3 𝑦𝜑
32rmo2ilem 3079 . 2 (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
41, 3syl 14 1 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wnf 1474  wex 1506  wral 2475  wrex 2476  ∃*wrmo 2478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-ral 2480  df-rex 2481  df-rmo 2483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator