ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2i GIF version

Theorem rmo2i 3053
Description: Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1 𝑦𝜑
Assertion
Ref Expression
rmo2i (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rmo2i
StepHypRef Expression
1 rexex 2523 . 2 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
2 rmo2.1 . . 3 𝑦𝜑
32rmo2ilem 3052 . 2 (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
41, 3syl 14 1 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wnf 1460  wex 1492  wral 2455  wrex 2456  ∃*wrmo 2458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-ral 2460  df-rex 2461  df-rmo 2463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator