![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rmo2i | GIF version |
Description: Condition implying restricted at-most-one quantifier. (Contributed by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmo2.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
rmo2i | ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexex 2523 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) | |
2 | rmo2.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | 2 | rmo2ilem 3052 | . 2 ⊢ (∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
4 | 1, 3 | syl 14 | 1 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 Ⅎwnf 1460 ∃wex 1492 ∀wral 2455 ∃wrex 2456 ∃*wrmo 2458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-ral 2460 df-rex 2461 df-rmo 2463 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |