Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rmo3 | Unicode version |
Description: Restricted at-most-one quantifier using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmo2.1 |
Ref | Expression |
---|---|
rmo3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 2456 | . 2 | |
2 | sban 1948 | . . . . . . . . . . 11 | |
3 | clelsb1 2275 | . . . . . . . . . . . 12 | |
4 | 3 | anbi1i 455 | . . . . . . . . . . 11 |
5 | 2, 4 | bitri 183 | . . . . . . . . . 10 |
6 | 5 | anbi2i 454 | . . . . . . . . 9 |
7 | an4 581 | . . . . . . . . 9 | |
8 | ancom 264 | . . . . . . . . . 10 | |
9 | 8 | anbi1i 455 | . . . . . . . . 9 |
10 | 6, 7, 9 | 3bitri 205 | . . . . . . . 8 |
11 | 10 | imbi1i 237 | . . . . . . 7 |
12 | impexp 261 | . . . . . . 7 | |
13 | impexp 261 | . . . . . . 7 | |
14 | 11, 12, 13 | 3bitri 205 | . . . . . 6 |
15 | 14 | albii 1463 | . . . . 5 |
16 | df-ral 2453 | . . . . 5 | |
17 | r19.21v 2547 | . . . . 5 | |
18 | 15, 16, 17 | 3bitr2i 207 | . . . 4 |
19 | 18 | albii 1463 | . . 3 |
20 | nfv 1521 | . . . . 5 | |
21 | rmo2.1 | . . . . 5 | |
22 | 20, 21 | nfan 1558 | . . . 4 |
23 | 22 | mo3 2073 | . . 3 |
24 | df-ral 2453 | . . 3 | |
25 | 19, 23, 24 | 3bitr4i 211 | . 2 |
26 | 1, 25 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wnf 1453 wsb 1755 wmo 2020 wcel 2141 wral 2448 wrmo 2451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-cleq 2163 df-clel 2166 df-ral 2453 df-rmo 2456 |
This theorem is referenced by: disjiun 3984 |
Copyright terms: Public domain | W3C validator |