ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexex Unicode version

Theorem rexex 2551
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex  |-  ( E. x  e.  A  ph  ->  E. x ph )

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 2489 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 simpr 110 . . 3  |-  ( ( x  e.  A  /\  ph )  ->  ph )
32eximi 1622 . 2  |-  ( E. x ( x  e.  A  /\  ph )  ->  E. x ph )
41, 3sylbi 121 1  |-  ( E. x  e.  A  ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1514    e. wcel 2175   E.wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-rex 2489
This theorem is referenced by:  reu3  2962  rmo2i  3088  dffo5  5728  halfnq  7523  nsmallnq  7525  0npr  7595  genpml  7629  genpmu  7630  ltexprlemm  7712  ltexprlemloc  7719  dedekindeulemlub  15063  dedekindicclemlub  15072
  Copyright terms: Public domain W3C validator