ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexex Unicode version

Theorem rexex 2576
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex  |-  ( E. x  e.  A  ph  ->  E. x ph )

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 2514 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 simpr 110 . . 3  |-  ( ( x  e.  A  /\  ph )  ->  ph )
32eximi 1646 . 2  |-  ( E. x ( x  e.  A  /\  ph )  ->  E. x ph )
41, 3sylbi 121 1  |-  ( E. x  e.  A  ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1538    e. wcel 2200   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-rex 2514
This theorem is referenced by:  reu3  2993  rmo2i  3120  dffo5  5783  halfnq  7594  nsmallnq  7596  0npr  7666  genpml  7700  genpmu  7701  ltexprlemm  7783  ltexprlemloc  7790  dedekindeulemlub  15288  dedekindicclemlub  15297
  Copyright terms: Public domain W3C validator