ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoeq1f Unicode version

Theorem rmoeq1f 2704
Description: Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypotheses
Ref Expression
raleq1f.1  |-  F/_ x A
raleq1f.2  |-  F/_ x B
Assertion
Ref Expression
rmoeq1f  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )

Proof of Theorem rmoeq1f
StepHypRef Expression
1 raleq1f.1 . . . 4  |-  F/_ x A
2 raleq1f.2 . . . 4  |-  F/_ x B
31, 2nfeq 2358 . . 3  |-  F/ x  A  =  B
4 eleq2 2271 . . . 4  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
54anbi1d 465 . . 3  |-  ( A  =  B  ->  (
( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ph )
) )
63, 5mobid 2090 . 2  |-  ( A  =  B  ->  ( E* x ( x  e.  A  /\  ph )  <->  E* x ( x  e.  B  /\  ph )
) )
7 df-rmo 2494 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
8 df-rmo 2494 . 2  |-  ( E* x  e.  B  ph  <->  E* x ( x  e.  B  /\  ph )
)
96, 7, 83bitr4g 223 1  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E*wmo 2056    e. wcel 2178   F/_wnfc 2337   E*wrmo 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rmo 2494
This theorem is referenced by:  rmoeq1  2708
  Copyright terms: Public domain W3C validator