| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rmoeq1f | Unicode version | ||
| Description: Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| raleq1f.1 |
|
| raleq1f.2 |
|
| Ref | Expression |
|---|---|
| rmoeq1f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1f.1 |
. . . 4
| |
| 2 | raleq1f.2 |
. . . 4
| |
| 3 | 1, 2 | nfeq 2356 |
. . 3
|
| 4 | eleq2 2269 |
. . . 4
| |
| 5 | 4 | anbi1d 465 |
. . 3
|
| 6 | 3, 5 | mobid 2089 |
. 2
|
| 7 | df-rmo 2492 |
. 2
| |
| 8 | df-rmo 2492 |
. 2
| |
| 9 | 6, 7, 8 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rmo 2492 |
| This theorem is referenced by: rmoeq1 2705 |
| Copyright terms: Public domain | W3C validator |