ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoeq1f Unicode version

Theorem rmoeq1f 2701
Description: Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypotheses
Ref Expression
raleq1f.1  |-  F/_ x A
raleq1f.2  |-  F/_ x B
Assertion
Ref Expression
rmoeq1f  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )

Proof of Theorem rmoeq1f
StepHypRef Expression
1 raleq1f.1 . . . 4  |-  F/_ x A
2 raleq1f.2 . . . 4  |-  F/_ x B
31, 2nfeq 2356 . . 3  |-  F/ x  A  =  B
4 eleq2 2269 . . . 4  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
54anbi1d 465 . . 3  |-  ( A  =  B  ->  (
( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ph )
) )
63, 5mobid 2089 . 2  |-  ( A  =  B  ->  ( E* x ( x  e.  A  /\  ph )  <->  E* x ( x  e.  B  /\  ph )
) )
7 df-rmo 2492 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
8 df-rmo 2492 . 2  |-  ( E* x  e.  B  ph  <->  E* x ( x  e.  B  /\  ph )
)
96, 7, 83bitr4g 223 1  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E*wmo 2055    e. wcel 2176   F/_wnfc 2335   E*wrmo 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rmo 2492
This theorem is referenced by:  rmoeq1  2705
  Copyright terms: Public domain W3C validator