| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleq | Unicode version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 |
. 2
| |
| 2 | nfcv 2372 |
. 2
| |
| 3 | 1, 2 | raleqf 2724 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 |
| This theorem is referenced by: raleqi 2732 raleqdv 2734 raleqbi1dv 2740 sbralie 2783 inteq 3926 iineq1 3979 bnd2 4257 frforeq2 4436 weeq2 4448 ordeq 4463 reg2exmid 4628 reg3exmid 4672 omsinds 4714 fncnv 5387 funimaexglem 5404 isoeq4 5928 acexmidlemv 5999 tfrlem1 6454 tfr0dm 6468 tfrlemisucaccv 6471 tfrlemi1 6478 tfrlemi14d 6479 tfrexlem 6480 tfr1onlemsucaccv 6487 tfr1onlemaccex 6494 tfr1onlemres 6495 tfrcllemsucaccv 6500 tfrcllembxssdm 6502 tfrcllemaccex 6507 tfrcllemres 6508 tfrcldm 6509 ixpeq1 6856 ac6sfi 7060 fimax2gtri 7063 dcfi 7148 supeq1 7153 supeq2 7156 nnnninfeq2 7296 isomni 7303 ismkv 7320 iswomni 7332 acneq 7384 tapeq2 7439 sup3exmid 9104 rexanuz 11499 rexfiuz 11500 fimaxre2 11738 modfsummod 11969 mhmpropd 13499 isghm 13780 iscmn 13830 srgideu 13935 dfrhm2 14118 cnprcl2k 14880 ispsmet 14997 ismet 15018 isxmet 15019 cncfval 15246 dvcn 15374 setindis 16330 bdsetindis 16332 strcoll2 16346 strcollnfALT 16349 |
| Copyright terms: Public domain | W3C validator |