| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleq | Unicode version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 |
. 2
| |
| 2 | nfcv 2350 |
. 2
| |
| 3 | 1, 2 | raleqf 2701 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 |
| This theorem is referenced by: raleqi 2709 raleqdv 2711 raleqbi1dv 2717 sbralie 2760 inteq 3902 iineq1 3955 bnd2 4233 frforeq2 4410 weeq2 4422 ordeq 4437 reg2exmid 4602 reg3exmid 4646 omsinds 4688 fncnv 5359 funimaexglem 5376 isoeq4 5896 acexmidlemv 5965 tfrlem1 6417 tfr0dm 6431 tfrlemisucaccv 6434 tfrlemi1 6441 tfrlemi14d 6442 tfrexlem 6443 tfr1onlemsucaccv 6450 tfr1onlemaccex 6457 tfr1onlemres 6458 tfrcllemsucaccv 6463 tfrcllembxssdm 6465 tfrcllemaccex 6470 tfrcllemres 6471 tfrcldm 6472 ixpeq1 6819 ac6sfi 7021 fimax2gtri 7024 dcfi 7109 supeq1 7114 supeq2 7117 nnnninfeq2 7257 isomni 7264 ismkv 7281 iswomni 7293 acneq 7345 tapeq2 7400 sup3exmid 9065 rexanuz 11414 rexfiuz 11415 fimaxre2 11653 modfsummod 11884 mhmpropd 13413 isghm 13694 iscmn 13744 srgideu 13849 dfrhm2 14031 cnprcl2k 14793 ispsmet 14910 ismet 14931 isxmet 14932 cncfval 15159 dvcn 15287 setindis 16102 bdsetindis 16104 strcoll2 16118 strcollnfALT 16121 |
| Copyright terms: Public domain | W3C validator |