![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > raleq | Unicode version |
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2235 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2235 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | raleqf 2572 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 |
This theorem is referenced by: raleqi 2580 raleqdv 2582 raleqbi1dv 2584 sbralie 2617 inteq 3713 iineq1 3766 bnd2 4029 frforeq2 4196 weeq2 4208 ordeq 4223 reg2exmid 4380 reg3exmid 4423 omsinds 4463 fncnv 5114 funimaexglem 5131 isoeq4 5621 acexmidlemv 5688 tfrlem1 6111 tfr0dm 6125 tfrlemisucaccv 6128 tfrlemi1 6135 tfrlemi14d 6136 tfrexlem 6137 tfr1onlemsucaccv 6144 tfr1onlemaccex 6151 tfr1onlemres 6152 tfrcllemsucaccv 6157 tfrcllembxssdm 6159 tfrcllemaccex 6164 tfrcllemres 6165 tfrcldm 6166 ixpeq1 6506 ac6sfi 6694 fimax2gtri 6697 supeq1 6761 supeq2 6764 isomni 6879 ismkv 6897 sup3exmid 8515 rexanuz 10536 rexfiuz 10537 fimaxre2 10773 modfsummod 11001 cnprcl2k 12057 ispsmet 12109 ismet 12130 isxmet 12131 cncfval 12325 setindis 12570 bdsetindis 12572 strcoll2 12586 |
Copyright terms: Public domain | W3C validator |