| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > raleq | Unicode version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) | 
| Ref | Expression | 
|---|---|
| raleq | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2339 | 
. 2
 | |
| 2 | nfcv 2339 | 
. 2
 | |
| 3 | 1, 2 | raleqf 2689 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 | 
| This theorem is referenced by: raleqi 2697 raleqdv 2699 raleqbi1dv 2705 sbralie 2747 inteq 3877 iineq1 3930 bnd2 4206 frforeq2 4380 weeq2 4392 ordeq 4407 reg2exmid 4572 reg3exmid 4616 omsinds 4658 fncnv 5324 funimaexglem 5341 isoeq4 5851 acexmidlemv 5920 tfrlem1 6366 tfr0dm 6380 tfrlemisucaccv 6383 tfrlemi1 6390 tfrlemi14d 6391 tfrexlem 6392 tfr1onlemsucaccv 6399 tfr1onlemaccex 6406 tfr1onlemres 6407 tfrcllemsucaccv 6412 tfrcllembxssdm 6414 tfrcllemaccex 6419 tfrcllemres 6420 tfrcldm 6421 ixpeq1 6768 ac6sfi 6959 fimax2gtri 6962 dcfi 7047 supeq1 7052 supeq2 7055 nnnninfeq2 7195 isomni 7202 ismkv 7219 iswomni 7231 tapeq2 7320 sup3exmid 8984 rexanuz 11153 rexfiuz 11154 fimaxre2 11392 modfsummod 11623 mhmpropd 13098 isghm 13373 iscmn 13423 srgideu 13528 dfrhm2 13710 cnprcl2k 14442 ispsmet 14559 ismet 14580 isxmet 14581 cncfval 14808 dvcn 14936 setindis 15613 bdsetindis 15615 strcoll2 15629 strcollnfALT 15632 | 
| Copyright terms: Public domain | W3C validator |