| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleq | Unicode version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. 2
| |
| 2 | nfcv 2348 |
. 2
| |
| 3 | 1, 2 | raleqf 2698 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: raleqi 2706 raleqdv 2708 raleqbi1dv 2714 sbralie 2756 inteq 3888 iineq1 3941 bnd2 4218 frforeq2 4393 weeq2 4405 ordeq 4420 reg2exmid 4585 reg3exmid 4629 omsinds 4671 fncnv 5341 funimaexglem 5358 isoeq4 5875 acexmidlemv 5944 tfrlem1 6396 tfr0dm 6410 tfrlemisucaccv 6413 tfrlemi1 6420 tfrlemi14d 6421 tfrexlem 6422 tfr1onlemsucaccv 6429 tfr1onlemaccex 6436 tfr1onlemres 6437 tfrcllemsucaccv 6442 tfrcllembxssdm 6444 tfrcllemaccex 6449 tfrcllemres 6450 tfrcldm 6451 ixpeq1 6798 ac6sfi 6997 fimax2gtri 7000 dcfi 7085 supeq1 7090 supeq2 7093 nnnninfeq2 7233 isomni 7240 ismkv 7257 iswomni 7269 acneq 7316 tapeq2 7367 sup3exmid 9032 rexanuz 11332 rexfiuz 11333 fimaxre2 11571 modfsummod 11802 mhmpropd 13331 isghm 13612 iscmn 13662 srgideu 13767 dfrhm2 13949 cnprcl2k 14711 ispsmet 14828 ismet 14849 isxmet 14850 cncfval 15077 dvcn 15205 setindis 15940 bdsetindis 15942 strcoll2 15956 strcollnfALT 15959 |
| Copyright terms: Public domain | W3C validator |