| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleq | Unicode version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 |
. 2
| |
| 2 | nfcv 2339 |
. 2
| |
| 3 | 1, 2 | raleqf 2689 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: raleqi 2697 raleqdv 2699 raleqbi1dv 2705 sbralie 2747 inteq 3878 iineq1 3931 bnd2 4207 frforeq2 4381 weeq2 4393 ordeq 4408 reg2exmid 4573 reg3exmid 4617 omsinds 4659 fncnv 5325 funimaexglem 5342 isoeq4 5854 acexmidlemv 5923 tfrlem1 6375 tfr0dm 6389 tfrlemisucaccv 6392 tfrlemi1 6399 tfrlemi14d 6400 tfrexlem 6401 tfr1onlemsucaccv 6408 tfr1onlemaccex 6415 tfr1onlemres 6416 tfrcllemsucaccv 6421 tfrcllembxssdm 6423 tfrcllemaccex 6428 tfrcllemres 6429 tfrcldm 6430 ixpeq1 6777 ac6sfi 6968 fimax2gtri 6971 dcfi 7056 supeq1 7061 supeq2 7064 nnnninfeq2 7204 isomni 7211 ismkv 7228 iswomni 7240 acneq 7285 tapeq2 7336 sup3exmid 9001 rexanuz 11170 rexfiuz 11171 fimaxre2 11409 modfsummod 11640 mhmpropd 13168 isghm 13449 iscmn 13499 srgideu 13604 dfrhm2 13786 cnprcl2k 14526 ispsmet 14643 ismet 14664 isxmet 14665 cncfval 14892 dvcn 15020 setindis 15697 bdsetindis 15699 strcoll2 15713 strcollnfALT 15716 |
| Copyright terms: Public domain | W3C validator |