Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb4bor | GIF version |
Description: Simplified definition of substitution when variables are distinct, expressed via disjunction. (Contributed by Jim Kingdon, 18-Mar-2018.) |
Ref | Expression |
---|---|
sb4bor | ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4or 1826 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | sb2 1760 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | |
3 | df-bi 116 | . . . . . 6 ⊢ ((([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ∧ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑))) ∧ ((([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ∧ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
4 | 3 | simpri 112 | . . . . 5 ⊢ ((([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ∧ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
5 | 2, 4 | mpan2 423 | . . . 4 ⊢ (([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
6 | 5 | alimi 1448 | . . 3 ⊢ (∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑥([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
7 | 6 | orim2i 756 | . 2 ⊢ ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
8 | 1, 7 | ax-mp 5 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∀wal 1346 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |