ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8ab Unicode version

Theorem sb8ab 2329
Description: Substitution of variable in class abstraction. (Contributed by Jim Kingdon, 27-Sep-2018.)
Hypothesis
Ref Expression
sb8ab.1  |-  F/ y
ph
Assertion
Ref Expression
sb8ab  |-  { x  |  ph }  =  {
y  |  [ y  /  x ] ph }

Proof of Theorem sb8ab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sb8ab.1 . . . 4  |-  F/ y
ph
21sbco2 1994 . . 3  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] ph )
3 df-clab 2194 . . 3  |-  ( z  e.  { y  |  [ y  /  x ] ph }  <->  [ z  /  y ] [
y  /  x ] ph )
4 df-clab 2194 . . 3  |-  ( z  e.  { x  | 
ph }  <->  [ z  /  x ] ph )
52, 3, 43bitr4ri 213 . 2  |-  ( z  e.  { x  | 
ph }  <->  z  e.  { y  |  [ y  /  x ] ph } )
65eqriv 2204 1  |-  { x  |  ph }  =  {
y  |  [ y  /  x ] ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   F/wnf 1484   [wsb 1786    e. wcel 2178   {cab 2193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator