Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abid2 | Unicode version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 171 | . . 3 | |
2 | 1 | abbi2i 2290 | . 2 |
3 | 2 | eqcomi 2179 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 wcel 2146 cab 2161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: csbid 3063 abss 3222 ssab 3223 abssi 3228 notab 3403 inrab2 3406 dfrab2 3408 dfrab3 3409 notrab 3410 eusn 3663 dfopg 3772 iunid 3937 csbexga 4126 imai 4977 dffv4g 5504 frec0g 6388 dfixp 6690 euen1b 6793 acfun 7196 ccfunen 7238 |
Copyright terms: Public domain | W3C validator |