Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abid2 | Unicode version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 170 | . . 3 | |
2 | 1 | abbi2i 2269 | . 2 |
3 | 2 | eqcomi 2158 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1332 wcel 2125 cab 2140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 |
This theorem is referenced by: csbid 3035 abss 3193 ssab 3194 abssi 3199 notab 3373 inrab2 3376 dfrab2 3378 dfrab3 3379 notrab 3380 eusn 3629 dfopg 3735 iunid 3900 csbexga 4088 imai 4935 dffv4g 5458 frec0g 6334 dfixp 6634 euen1b 6737 acfun 7121 ccfunen 7163 |
Copyright terms: Public domain | W3C validator |