| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqriv | Unicode version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 |
|
| Ref | Expression |
|---|---|
| eqriv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2199 |
. 2
| |
| 2 | eqriv.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: eqid 2205 sb8ab 2327 cbvabw 2328 cbvab 2329 vjust 2773 nfccdeq 2996 csbcow 3104 difeqri 3293 uneqri 3315 incom 3365 ineqri 3366 difin 3410 invdif 3415 indif 3416 difundi 3425 indifdir 3429 pwv 3849 uniun 3869 intun 3916 intpr 3917 iuncom 3933 iuncom4 3934 iun0 3984 0iun 3985 iunin2 3991 iunun 4006 iunxun 4007 iunxiun 4009 iinpw 4018 inuni 4199 unidif0 4211 unipw 4261 snnex 4495 unon 4559 xpiundi 4733 xpiundir 4734 0xp 4755 iunxpf 4826 cnvuni 4864 dmiun 4887 dmuni 4888 epini 5053 rniun 5093 cnvresima 5172 imaco 5188 rnco 5189 dfmpt3 5398 imaiun 5829 opabex3d 6206 opabex3 6207 ecid 6685 qsid 6687 mapval2 6765 ixpin 6810 dfz2 9445 infssuzex 10376 dfrp2 10406 1nprm 12436 infpn2 12827 rrgval 14024 2idlval 14264 cnfldui 14351 zrhval 14379 plyun0 15208 |
| Copyright terms: Public domain | W3C validator |