| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqriv | Unicode version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| eqriv.1 | 
 | 
| Ref | Expression | 
|---|---|
| eqriv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfcleq 2190 | 
. 2
 | |
| 2 | eqriv.1 | 
. 2
 | |
| 3 | 1, 2 | mpgbir 1467 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: eqid 2196 sb8ab 2318 cbvabw 2319 cbvab 2320 vjust 2764 nfccdeq 2987 csbcow 3095 difeqri 3283 uneqri 3305 incom 3355 ineqri 3356 difin 3400 invdif 3405 indif 3406 difundi 3415 indifdir 3419 pwv 3838 uniun 3858 intun 3905 intpr 3906 iuncom 3922 iuncom4 3923 iun0 3973 0iun 3974 iunin2 3980 iunun 3995 iunxun 3996 iunxiun 3998 iinpw 4007 inuni 4188 unidif0 4200 unipw 4250 snnex 4483 unon 4547 xpiundi 4721 xpiundir 4722 0xp 4743 iunxpf 4814 cnvuni 4852 dmiun 4875 dmuni 4876 epini 5040 rniun 5080 cnvresima 5159 imaco 5175 rnco 5176 dfmpt3 5380 imaiun 5807 opabex3d 6178 opabex3 6179 ecid 6657 qsid 6659 mapval2 6737 ixpin 6782 dfz2 9398 infssuzex 10323 dfrp2 10353 1nprm 12282 infpn2 12673 rrgval 13818 2idlval 14058 cnfldui 14145 zrhval 14173 plyun0 14972 | 
| Copyright terms: Public domain | W3C validator |