ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqriv Unicode version

Theorem eqriv 2226
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
eqriv.1  |-  ( x  e.  A  <->  x  e.  B )
Assertion
Ref Expression
eqriv  |-  A  =  B
Distinct variable groups:    x, A    x, B

Proof of Theorem eqriv
StepHypRef Expression
1 dfcleq 2223 . 2  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
2 eqriv.1 . 2  |-  ( x  e.  A  <->  x  e.  B )
31, 2mpgbir 1499 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    e. wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222
This theorem is referenced by:  eqid  2229  sb8ab  2351  cbvabw  2352  cbvab  2353  vjust  2800  nfccdeq  3026  csbcow  3135  difeqri  3324  uneqri  3346  incom  3396  ineqri  3397  difin  3441  invdif  3446  indif  3447  difundi  3456  indifdir  3460  pwv  3887  uniun  3907  intun  3954  intpr  3955  iuncom  3971  iuncom4  3972  iun0  4022  0iun  4023  iunin2  4029  iunun  4044  iunxun  4045  iunxiun  4047  iinpw  4056  inuni  4239  unidif0  4251  unipw  4303  snnex  4539  unon  4603  xpiundi  4777  xpiundir  4778  0xp  4799  iunxpf  4870  cnvuni  4908  dmiun  4932  dmuni  4933  epini  5099  rniun  5139  cnvresima  5218  imaco  5234  rnco  5235  dfmpt3  5446  imaiun  5884  opabex3d  6266  opabex3  6267  ecid  6745  qsid  6747  mapval2  6825  ixpin  6870  dfz2  9519  infssuzex  10453  dfrp2  10483  1nprm  12636  infpn2  13027  rrgval  14226  2idlval  14466  cnfldui  14553  zrhval  14581  plyun0  15410
  Copyright terms: Public domain W3C validator