| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqriv | Unicode version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 |
|
| Ref | Expression |
|---|---|
| eqriv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2201 |
. 2
| |
| 2 | eqriv.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1477 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eqid 2207 sb8ab 2329 cbvabw 2330 cbvab 2331 vjust 2777 nfccdeq 3003 csbcow 3112 difeqri 3301 uneqri 3323 incom 3373 ineqri 3374 difin 3418 invdif 3423 indif 3424 difundi 3433 indifdir 3437 pwv 3863 uniun 3883 intun 3930 intpr 3931 iuncom 3947 iuncom4 3948 iun0 3998 0iun 3999 iunin2 4005 iunun 4020 iunxun 4021 iunxiun 4023 iinpw 4032 inuni 4215 unidif0 4227 unipw 4279 snnex 4513 unon 4577 xpiundi 4751 xpiundir 4752 0xp 4773 iunxpf 4844 cnvuni 4882 dmiun 4906 dmuni 4907 epini 5072 rniun 5112 cnvresima 5191 imaco 5207 rnco 5208 dfmpt3 5418 imaiun 5852 opabex3d 6229 opabex3 6230 ecid 6708 qsid 6710 mapval2 6788 ixpin 6833 dfz2 9480 infssuzex 10413 dfrp2 10443 1nprm 12551 infpn2 12942 rrgval 14139 2idlval 14379 cnfldui 14466 zrhval 14494 plyun0 15323 |
| Copyright terms: Public domain | W3C validator |