Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqriv | Unicode version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqriv.1 |
Ref | Expression |
---|---|
eqriv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2151 | . 2 | |
2 | eqriv.1 | . 2 | |
3 | 1, 2 | mpgbir 1433 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1335 wcel 2128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 |
This theorem is referenced by: eqid 2157 sb8ab 2279 cbvabw 2280 cbvab 2281 vjust 2713 nfccdeq 2935 csbcow 3042 difeqri 3227 uneqri 3249 incom 3299 ineqri 3300 difin 3344 invdif 3349 indif 3350 difundi 3359 indifdir 3363 pwv 3771 uniun 3791 intun 3838 intpr 3839 iuncom 3855 iuncom4 3856 iun0 3905 0iun 3906 iunin2 3912 iunun 3927 iunxun 3928 iunxiun 3930 iinpw 3939 inuni 4116 unidif0 4127 unipw 4176 snnex 4406 unon 4468 xpiundi 4641 xpiundir 4642 0xp 4663 iunxpf 4731 cnvuni 4769 dmiun 4792 dmuni 4793 epini 4954 rniun 4993 cnvresima 5072 imaco 5088 rnco 5089 dfmpt3 5289 imaiun 5705 opabex3d 6063 opabex3 6064 ecid 6536 qsid 6538 mapval2 6616 ixpin 6661 dfz2 9219 dfrp2 10145 infssuzex 11817 1nprm 11971 |
Copyright terms: Public domain | W3C validator |