![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqriv | Unicode version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqriv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqriv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqriv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbir 1464 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqid 2193 sb8ab 2315 cbvabw 2316 cbvab 2317 vjust 2761 nfccdeq 2983 csbcow 3091 difeqri 3279 uneqri 3301 incom 3351 ineqri 3352 difin 3396 invdif 3401 indif 3402 difundi 3411 indifdir 3415 pwv 3834 uniun 3854 intun 3901 intpr 3902 iuncom 3918 iuncom4 3919 iun0 3969 0iun 3970 iunin2 3976 iunun 3991 iunxun 3992 iunxiun 3994 iinpw 4003 inuni 4184 unidif0 4196 unipw 4246 snnex 4479 unon 4543 xpiundi 4717 xpiundir 4718 0xp 4739 iunxpf 4810 cnvuni 4848 dmiun 4871 dmuni 4872 epini 5036 rniun 5076 cnvresima 5155 imaco 5171 rnco 5172 dfmpt3 5376 imaiun 5803 opabex3d 6173 opabex3 6174 ecid 6652 qsid 6654 mapval2 6732 ixpin 6777 dfz2 9389 dfrp2 10332 infssuzex 12086 1nprm 12252 infpn2 12613 rrgval 13758 2idlval 13998 cnfldui 14077 zrhval 14105 plyun0 14882 |
Copyright terms: Public domain | W3C validator |