| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqriv | Unicode version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 |
|
| Ref | Expression |
|---|---|
| eqriv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2190 |
. 2
| |
| 2 | eqriv.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1467 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqid 2196 sb8ab 2318 cbvabw 2319 cbvab 2320 vjust 2764 nfccdeq 2987 csbcow 3095 difeqri 3284 uneqri 3306 incom 3356 ineqri 3357 difin 3401 invdif 3406 indif 3407 difundi 3416 indifdir 3420 pwv 3839 uniun 3859 intun 3906 intpr 3907 iuncom 3923 iuncom4 3924 iun0 3974 0iun 3975 iunin2 3981 iunun 3996 iunxun 3997 iunxiun 3999 iinpw 4008 inuni 4189 unidif0 4201 unipw 4251 snnex 4484 unon 4548 xpiundi 4722 xpiundir 4723 0xp 4744 iunxpf 4815 cnvuni 4853 dmiun 4876 dmuni 4877 epini 5041 rniun 5081 cnvresima 5160 imaco 5176 rnco 5177 dfmpt3 5383 imaiun 5810 opabex3d 6187 opabex3 6188 ecid 6666 qsid 6668 mapval2 6746 ixpin 6791 dfz2 9415 infssuzex 10340 dfrp2 10370 1nprm 12307 infpn2 12698 rrgval 13894 2idlval 14134 cnfldui 14221 zrhval 14249 plyun0 15056 |
| Copyright terms: Public domain | W3C validator |