ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8ab GIF version

Theorem sb8ab 2328
Description: Substitution of variable in class abstraction. (Contributed by Jim Kingdon, 27-Sep-2018.)
Hypothesis
Ref Expression
sb8ab.1 𝑦𝜑
Assertion
Ref Expression
sb8ab {𝑥𝜑} = {𝑦 ∣ [𝑦 / 𝑥]𝜑}

Proof of Theorem sb8ab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sb8ab.1 . . . 4 𝑦𝜑
21sbco2 1994 . . 3 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
3 df-clab 2193 . . 3 (𝑧 ∈ {𝑦 ∣ [𝑦 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
4 df-clab 2193 . . 3 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
52, 3, 43bitr4ri 213 . 2 (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦 ∣ [𝑦 / 𝑥]𝜑})
65eqriv 2203 1 {𝑥𝜑} = {𝑦 ∣ [𝑦 / 𝑥]𝜑}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wnf 1484  [wsb 1786  wcel 2177  {cab 2192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator