![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb8ab | GIF version |
Description: Substitution of variable in class abstraction. (Contributed by Jim Kingdon, 27-Sep-2018.) |
Ref | Expression |
---|---|
sb8ab.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8ab | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ [𝑦 / 𝑥]𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8ab.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sbco2 1888 | . . 3 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
3 | df-clab 2076 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ [𝑦 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) | |
4 | df-clab 2076 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
5 | 2, 3, 4 | 3bitr4ri 212 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ [𝑦 / 𝑥]𝜑}) |
6 | 5 | eqriv 2086 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ [𝑦 / 𝑥]𝜑} |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 Ⅎwnf 1395 ∈ wcel 1439 [wsb 1693 {cab 2075 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |