| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb8ab | GIF version | ||
| Description: Substitution of variable in class abstraction. (Contributed by Jim Kingdon, 27-Sep-2018.) |
| Ref | Expression |
|---|---|
| sb8ab.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| sb8ab | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ [𝑦 / 𝑥]𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8ab.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | sbco2 2016 | . . 3 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
| 3 | df-clab 2216 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ [𝑦 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) | |
| 4 | df-clab 2216 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 5 | 2, 3, 4 | 3bitr4ri 213 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ [𝑦 / 𝑥]𝜑}) |
| 6 | 5 | eqriv 2226 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ [𝑦 / 𝑥]𝜑} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 Ⅎwnf 1506 [wsb 1808 ∈ wcel 2200 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |