Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb9v | Unicode version |
Description: Like sb9 1959 but with a distinct variable constraint between and . (Contributed by Jim Kingdon, 28-Feb-2018.) |
Ref | Expression |
---|---|
sb9v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1 1918 | . 2 | |
2 | hbs1 1918 | . 2 | |
3 | sbequ12 1751 | . . . 4 | |
4 | 3 | equcoms 1688 | . . 3 |
5 | sbequ12 1751 | . . 3 | |
6 | 4, 5 | bitr3d 189 | . 2 |
7 | 1, 2, 6 | cbvalh 1733 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1333 wsb 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 |
This theorem is referenced by: sb9 1959 |
Copyright terms: Public domain | W3C validator |