ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb9v Unicode version

Theorem sb9v 1994
Description: Like sb9 1995 but with a distinct variable constraint between  x and  y. (Contributed by Jim Kingdon, 28-Feb-2018.)
Assertion
Ref Expression
sb9v  |-  ( A. x [ x  /  y ] ph  <->  A. y [ y  /  x ] ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb9v
StepHypRef Expression
1 hbs1 1954 . 2  |-  ( [ x  /  y ]
ph  ->  A. y [ x  /  y ] ph )
2 hbs1 1954 . 2  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
3 sbequ12 1782 . . . 4  |-  ( y  =  x  ->  ( ph 
<->  [ x  /  y ] ph ) )
43equcoms 1719 . . 3  |-  ( x  =  y  ->  ( ph 
<->  [ x  /  y ] ph ) )
5 sbequ12 1782 . . 3  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
64, 5bitr3d 190 . 2  |-  ( x  =  y  ->  ( [ x  /  y ] ph  <->  [ y  /  x ] ph ) )
71, 2, 6cbvalh 1764 1  |-  ( A. x [ x  /  y ] ph  <->  A. y [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  sb9  1995
  Copyright terms: Public domain W3C validator