ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb9v Unicode version

Theorem sb9v 1978
Description: Like sb9 1979 but with a distinct variable constraint between  x and  y. (Contributed by Jim Kingdon, 28-Feb-2018.)
Assertion
Ref Expression
sb9v  |-  ( A. x [ x  /  y ] ph  <->  A. y [ y  /  x ] ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb9v
StepHypRef Expression
1 hbs1 1938 . 2  |-  ( [ x  /  y ]
ph  ->  A. y [ x  /  y ] ph )
2 hbs1 1938 . 2  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
3 sbequ12 1771 . . . 4  |-  ( y  =  x  ->  ( ph 
<->  [ x  /  y ] ph ) )
43equcoms 1708 . . 3  |-  ( x  =  y  ->  ( ph 
<->  [ x  /  y ] ph ) )
5 sbequ12 1771 . . 3  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
64, 5bitr3d 190 . 2  |-  ( x  =  y  ->  ( [ x  /  y ] ph  <->  [ y  /  x ] ph ) )
71, 2, 6cbvalh 1753 1  |-  ( A. x [ x  /  y ] ph  <->  A. y [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1351   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  sb9  1979
  Copyright terms: Public domain W3C validator