Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb9v | Unicode version |
Description: Like sb9 1972 but with a distinct variable constraint between and . (Contributed by Jim Kingdon, 28-Feb-2018.) |
Ref | Expression |
---|---|
sb9v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1 1931 | . 2 | |
2 | hbs1 1931 | . 2 | |
3 | sbequ12 1764 | . . . 4 | |
4 | 3 | equcoms 1701 | . . 3 |
5 | sbequ12 1764 | . . 3 | |
6 | 4, 5 | bitr3d 189 | . 2 |
7 | 1, 2, 6 | cbvalh 1746 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1346 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sb9 1972 |
Copyright terms: Public domain | W3C validator |