ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbd Unicode version

Theorem nfsbd 2005
Description: Deduction version of nfsb 1974. (Contributed by NM, 15-Feb-2013.)
Hypotheses
Ref Expression
nfsbd.1  |-  F/ x ph
nfsbd.2  |-  ( ph  ->  F/ z ps )
Assertion
Ref Expression
nfsbd  |-  ( ph  ->  F/ z [ y  /  x ] ps )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem nfsbd
StepHypRef Expression
1 nfsbd.1 . . 3  |-  F/ x ph
21nfri 1542 . 2  |-  ( ph  ->  A. x ph )
3 nfsbd.2 . . 3  |-  ( ph  ->  F/ z ps )
43alimi 1478 . 2  |-  ( A. x ph  ->  A. x F/ z ps )
5 nfsbt 2004 . 2  |-  ( A. x F/ z ps  ->  F/ z [ y  /  x ] ps )
62, 4, 53syl 17 1  |-  ( ph  ->  F/ z [ y  /  x ] ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   F/wnf 1483   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  nfeud  2070  nfabd  2368  nfraldya  2541  nfrexdya  2542  cbvrald  15724
  Copyright terms: Public domain W3C validator