ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb9v GIF version

Theorem sb9v 2007
Description: Like sb9 2008 but with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 28-Feb-2018.)
Assertion
Ref Expression
sb9v (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb9v
StepHypRef Expression
1 hbs1 1967 . 2 ([𝑥 / 𝑦]𝜑 → ∀𝑦[𝑥 / 𝑦]𝜑)
2 hbs1 1967 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
3 sbequ12 1795 . . . 4 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
43equcoms 1732 . . 3 (𝑥 = 𝑦 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
5 sbequ12 1795 . . 3 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
64, 5bitr3d 190 . 2 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))
71, 2, 6cbvalh 1777 1 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1371  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  sb9  2008
  Copyright terms: Public domain W3C validator