![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb9v | GIF version |
Description: Like sb9 1904 but with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 28-Feb-2018.) |
Ref | Expression |
---|---|
sb9v | ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1 1863 | . 2 ⊢ ([𝑥 / 𝑦]𝜑 → ∀𝑦[𝑥 / 𝑦]𝜑) | |
2 | hbs1 1863 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
3 | sbequ12 1702 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
4 | 3 | equcoms 1642 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) |
5 | sbequ12 1702 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
6 | 4, 5 | bitr3d 189 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
7 | 1, 2, 6 | cbvalh 1684 | 1 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1288 [wsb 1693 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 |
This theorem is referenced by: sb9 1904 |
Copyright terms: Public domain | W3C validator |