| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb9v | GIF version | ||
| Description: Like sb9 2008 but with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 28-Feb-2018.) |
| Ref | Expression |
|---|---|
| sb9v | ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbs1 1967 | . 2 ⊢ ([𝑥 / 𝑦]𝜑 → ∀𝑦[𝑥 / 𝑦]𝜑) | |
| 2 | hbs1 1967 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
| 3 | sbequ12 1795 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
| 4 | 3 | equcoms 1732 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) |
| 5 | sbequ12 1795 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 6 | 4, 5 | bitr3d 190 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 7 | 1, 2, 6 | cbvalh 1777 | 1 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sb9 2008 |
| Copyright terms: Public domain | W3C validator |