ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceqg Unicode version

Theorem sbceqg 3075
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbceqg  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )

Proof of Theorem sbceqg
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2967 . . 3  |-  ( z  =  A  ->  ( [ z  /  x ] B  =  C  <->  [. A  /  x ]. B  =  C )
)
2 dfsbcq2 2967 . . . . 5  |-  ( z  =  A  ->  ( [ z  /  x ] y  e.  B  <->  [. A  /  x ]. y  e.  B )
)
32abbidv 2295 . . . 4  |-  ( z  =  A  ->  { y  |  [ z  /  x ] y  e.  B }  =  { y  |  [. A  /  x ]. y  e.  B } )
4 dfsbcq2 2967 . . . . 5  |-  ( z  =  A  ->  ( [ z  /  x ] y  e.  C  <->  [. A  /  x ]. y  e.  C )
)
54abbidv 2295 . . . 4  |-  ( z  =  A  ->  { y  |  [ z  /  x ] y  e.  C }  =  { y  |  [. A  /  x ]. y  e.  C } )
63, 5eqeq12d 2192 . . 3  |-  ( z  =  A  ->  ( { y  |  [
z  /  x ]
y  e.  B }  =  { y  |  [
z  /  x ]
y  e.  C }  <->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } ) )
7 nfs1v 1939 . . . . . 6  |-  F/ x [ z  /  x ] y  e.  B
87nfab 2324 . . . . 5  |-  F/_ x { y  |  [
z  /  x ]
y  e.  B }
9 nfs1v 1939 . . . . . 6  |-  F/ x [ z  /  x ] y  e.  C
109nfab 2324 . . . . 5  |-  F/_ x { y  |  [
z  /  x ]
y  e.  C }
118, 10nfeq 2327 . . . 4  |-  F/ x { y  |  [
z  /  x ]
y  e.  B }  =  { y  |  [
z  /  x ]
y  e.  C }
12 sbab 2305 . . . . 5  |-  ( x  =  z  ->  B  =  { y  |  [
z  /  x ]
y  e.  B }
)
13 sbab 2305 . . . . 5  |-  ( x  =  z  ->  C  =  { y  |  [
z  /  x ]
y  e.  C }
)
1412, 13eqeq12d 2192 . . . 4  |-  ( x  =  z  ->  ( B  =  C  <->  { y  |  [ z  /  x ] y  e.  B }  =  { y  |  [ z  /  x ] y  e.  C } ) )
1511, 14sbie 1791 . . 3  |-  ( [ z  /  x ] B  =  C  <->  { y  |  [ z  /  x ] y  e.  B }  =  { y  |  [ z  /  x ] y  e.  C } )
161, 6, 15vtoclbg 2800 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } ) )
17 df-csb 3060 . . 3  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
18 df-csb 3060 . . 3  |-  [_ A  /  x ]_ C  =  { y  |  [. A  /  x ]. y  e.  C }
1917, 18eqeq12i 2191 . 2  |-  ( [_ A  /  x ]_ B  =  [_ A  /  x ]_ C  <->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } )
2016, 19bitr4di 198 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   [wsb 1762    e. wcel 2148   {cab 2163   [.wsbc 2964   [_csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060
This theorem is referenced by:  sbcne12g  3077  sbceq1g  3079  sbceq2g  3081  sbcfng  5365  fprodmodd  11651
  Copyright terms: Public domain W3C validator