ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi2dv Unicode version

Theorem abbi2dv 2312
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
abbirdv.1  |-  ( ph  ->  ( x  e.  A  <->  ps ) )
Assertion
Ref Expression
abbi2dv  |-  ( ph  ->  A  =  { x  |  ps } )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem abbi2dv
StepHypRef Expression
1 abbirdv.1 . . 3  |-  ( ph  ->  ( x  e.  A  <->  ps ) )
21alrimiv 1885 . 2  |-  ( ph  ->  A. x ( x  e.  A  <->  ps )
)
3 abeq2 2302 . 2  |-  ( A  =  { x  |  ps }  <->  A. x
( x  e.  A  <->  ps ) )
42, 3sylibr 134 1  |-  ( ph  ->  A  =  { x  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   {cab 2179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189
This theorem is referenced by:  sbab  2321  iftrue  3562  iffalse  3565  iniseg  5037  fncnvima2  5679  isoini  5861  dftpos3  6315  unfiexmid  6974  tgval3  14226  txrest  14444  cnblcld  14703
  Copyright terms: Public domain W3C validator