Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbi2dv | Unicode version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
abbirdv.1 |
Ref | Expression |
---|---|
abbi2dv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbirdv.1 | . . 3 | |
2 | 1 | alrimiv 1854 | . 2 |
3 | abeq2 2266 | . 2 | |
4 | 2, 3 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1333 wceq 1335 wcel 2128 cab 2143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 |
This theorem is referenced by: sbab 2285 iftrue 3510 iffalse 3513 iniseg 4957 fncnvima2 5587 isoini 5765 dftpos3 6206 unfiexmid 6859 tgval3 12445 txrest 12663 cnblcld 12922 |
Copyright terms: Public domain | W3C validator |