| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbab | GIF version | ||
| Description: The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbab | ⊢ (𝑥 = 𝑦 → 𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12 1797 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑧 ∈ 𝐴)) | |
| 2 | 1 | abbi2dv 2328 | 1 ⊢ (𝑥 = 𝑦 → 𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 [wsb 1788 ∈ wcel 2180 {cab 2195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 |
| This theorem is referenced by: sbcel12g 3119 sbceqg 3120 |
| Copyright terms: Public domain | W3C validator |