ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbab GIF version

Theorem sbab 2334
Description: The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
sbab (𝑥 = 𝑦𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧𝐴})
Distinct variable groups:   𝑧,𝐴   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem sbab
StepHypRef Expression
1 sbequ12 1795 . 2 (𝑥 = 𝑦 → (𝑧𝐴 ↔ [𝑦 / 𝑥]𝑧𝐴))
21abbi2dv 2325 1 (𝑥 = 𝑦𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  [wsb 1786  wcel 2177  {cab 2192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202
This theorem is referenced by:  sbcel12g  3109  sbceqg  3110
  Copyright terms: Public domain W3C validator