Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbab | GIF version |
Description: The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
sbab | ⊢ (𝑥 = 𝑦 → 𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 1764 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑧 ∈ 𝐴)) | |
2 | 1 | abbi2dv 2289 | 1 ⊢ (𝑥 = 𝑦 → 𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 [wsb 1755 ∈ wcel 2141 {cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: sbcel12g 3064 sbceqg 3065 |
Copyright terms: Public domain | W3C validator |