ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbal1 Unicode version

Theorem sbal1 1978
Description: A theorem used in elimination of disjoint variable conditions on  x ,  y by replacing it with a distinctor  -.  A. x x  =  z. (Contributed by NM, 5-Aug-1993.) (Proof rewitten by Jim Kingdon, 24-Feb-2018.)
Assertion
Ref Expression
sbal1  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbal1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbal 1976 . . . 4  |-  ( [ w  /  y ] A. x ph  <->  A. x [ w  /  y ] ph )
21sbbii 1739 . . 3  |-  ( [ z  /  w ] [ w  /  y ] A. x ph  <->  [ z  /  w ] A. x [ w  /  y ] ph )
3 sbal1yz 1977 . . 3  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  w ] A. x [ w  / 
y ] ph  <->  A. x [ z  /  w ] [ w  /  y ] ph ) )
42, 3syl5bb 191 . 2  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  w ] [ w  /  y ] A. x ph  <->  A. x [ z  /  w ] [ w  /  y ] ph ) )
5 ax-17 1507 . . 3  |-  ( A. x ph  ->  A. w A. x ph )
65sbco2vh 1919 . 2  |-  ( [ z  /  w ] [ w  /  y ] A. x ph  <->  [ z  /  y ] A. x ph )
7 ax-17 1507 . . . 4  |-  ( ph  ->  A. w ph )
87sbco2vh 1919 . . 3  |-  ( [ z  /  w ] [ w  /  y ] ph  <->  [ z  /  y ] ph )
98albii 1447 . 2  |-  ( A. x [ z  /  w ] [ w  /  y ] ph  <->  A. x [ z  /  y ] ph )
104, 6, 93bitr3g 221 1  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104   A.wal 1330   [wsb 1736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator