Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbal1 Unicode version

Theorem sbal1 1977
 Description: A theorem used in elimination of disjoint variable conditions on by replacing it with a distinctor . (Contributed by NM, 5-Aug-1993.) (Proof rewitten by Jim Kingdon, 24-Feb-2018.)
Assertion
Ref Expression
sbal1
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem sbal1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbal 1975 . . . 4
21sbbii 1738 . . 3
3 sbal1yz 1976 . . 3
42, 3syl5bb 191 . 2
5 ax-17 1506 . . 3
65sbco2vh 1918 . 2
7 ax-17 1506 . . . 4
87sbco2vh 1918 . . 3
98albii 1446 . 2
104, 6, 93bitr3g 221 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 104  wal 1329  wsb 1735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator