Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbal1 | GIF version |
Description: A theorem used in elimination of disjoint variable conditions on 𝑥, 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 5-Aug-1993.) (Proof rewitten by Jim Kingdon, 24-Feb-2018.) |
Ref | Expression |
---|---|
sbal1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbal 1988 | . . . 4 ⊢ ([𝑤 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑤 / 𝑦]𝜑) | |
2 | 1 | sbbii 1753 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑤]∀𝑥[𝑤 / 𝑦]𝜑) |
3 | sbal1yz 1989 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑤]∀𝑥[𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑)) | |
4 | 2, 3 | syl5bb 191 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑)) |
5 | ax-17 1514 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑤∀𝑥𝜑) | |
6 | 5 | sbco2vh 1933 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑) |
7 | ax-17 1514 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
8 | 7 | sbco2vh 1933 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) |
9 | 8 | albii 1458 | . 2 ⊢ (∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
10 | 4, 6, 9 | 3bitr3g 221 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∀wal 1341 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |