| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbbii | Unicode version | ||
| Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbbii.1 |
|
| Ref | Expression |
|---|---|
| sbbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | sbimi 1787 |
. 2
|
| 4 | 1 | biimpri 133 |
. . 3
|
| 5 | 4 | sbimi 1787 |
. 2
|
| 6 | 3, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 |
| This theorem is referenced by: sbco2vh 1973 equsb3 1979 sbn 1980 sbim 1981 sbor 1982 sban 1983 sb3an 1986 sbbi 1987 sbco2h 1992 sbco2d 1994 sbco2vd 1995 sbco3v 1997 sbco3 2002 sbcom2v2 2014 sbcom2 2015 dfsb7 2019 sb7f 2020 sb7af 2021 sbal 2028 sbal1 2030 sbex 2032 sbco4lem 2034 sbco4 2035 sbmo 2113 elsb1 2183 elsb2 2184 eqsb1 2309 clelsb1 2310 clelsb2 2311 cbvabw 2328 clelsb1f 2352 sbabel 2375 sbralie 2756 sbcco 3020 exss 4271 inopab 4810 isarep1 5360 bezoutlemnewy 12317 |
| Copyright terms: Public domain | W3C validator |