ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbbii Unicode version

Theorem sbbii 1776
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
sbbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
sbbii  |-  ( [ y  /  x ] ph 
<->  [ y  /  x ] ps )

Proof of Theorem sbbii
StepHypRef Expression
1 sbbii.1 . . . 4  |-  ( ph  <->  ps )
21biimpi 120 . . 3  |-  ( ph  ->  ps )
32sbimi 1775 . 2  |-  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
41biimpri 133 . . 3  |-  ( ps 
->  ph )
54sbimi 1775 . 2  |-  ( [ y  /  x ] ps  ->  [ y  /  x ] ph )
63, 5impbii 126 1  |-  ( [ y  /  x ] ph 
<->  [ y  /  x ] ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-sb 1774
This theorem is referenced by:  sbco2vh  1961  equsb3  1967  sbn  1968  sbim  1969  sbor  1970  sban  1971  sb3an  1974  sbbi  1975  sbco2h  1980  sbco2d  1982  sbco2vd  1983  sbco3v  1985  sbco3  1990  sbcom2v2  2002  sbcom2  2003  dfsb7  2007  sb7f  2008  sb7af  2009  sbal  2016  sbal1  2018  sbex  2020  sbco4lem  2022  sbco4  2023  sbmo  2101  elsb1  2171  elsb2  2172  eqsb1  2297  clelsb1  2298  clelsb2  2299  cbvabw  2316  clelsb1f  2340  sbabel  2363  sbralie  2744  sbcco  3007  exss  4256  inopab  4794  isarep1  5340  bezoutlemnewy  12133
  Copyright terms: Public domain W3C validator