| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbbii | Unicode version | ||
| Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbbii.1 |
|
| Ref | Expression |
|---|---|
| sbbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | sbimi 1778 |
. 2
|
| 4 | 1 | biimpri 133 |
. . 3
|
| 5 | 4 | sbimi 1778 |
. 2
|
| 6 | 3, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: sbco2vh 1964 equsb3 1970 sbn 1971 sbim 1972 sbor 1973 sban 1974 sb3an 1977 sbbi 1978 sbco2h 1983 sbco2d 1985 sbco2vd 1986 sbco3v 1988 sbco3 1993 sbcom2v2 2005 sbcom2 2006 dfsb7 2010 sb7f 2011 sb7af 2012 sbal 2019 sbal1 2021 sbex 2023 sbco4lem 2025 sbco4 2026 sbmo 2104 elsb1 2174 elsb2 2175 eqsb1 2300 clelsb1 2301 clelsb2 2302 cbvabw 2319 clelsb1f 2343 sbabel 2366 sbralie 2747 sbcco 3011 exss 4260 inopab 4798 isarep1 5344 bezoutlemnewy 12163 |
| Copyright terms: Public domain | W3C validator |