ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemstep Unicode version

Theorem bezoutlemstep 11853
Description: Lemma for Bézout's identity. This is the induction step for the proof by induction. (Contributed by Jim Kingdon, 3-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemstep.is-bezout  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
bezoutlemstep.a  |-  ( th 
->  A  e.  NN0 )
bezoutlemstep.b  |-  ( th 
->  B  e.  NN0 )
bezoutlemstep.w  |-  ( th 
->  W  e.  NN )
bezoutlemstep.y-is-bezout  |-  ( th 
->  [ y  /  r ] ph )
bezoutlemstep.y-nn0  |-  ( th 
->  y  e.  NN0 )
bezoutlemstep.w-is-bezout  |-  ( th 
->  [. W  /  r ]. ph )
bezoutlemstep.sub-gcd  |-  ( ps  <->  A. z  e.  NN0  (
z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )
bezoutlemstep.hyp  |-  ( ( th  /\  [. (
y  mod  W )  /  r ]. ph )  ->  E. r  e.  NN0  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)
bezoutlemstep.thx  |-  F/ x th
bezoutlemstep.thr  |-  F/ r th
Assertion
Ref Expression
bezoutlemstep  |-  ( th 
->  E. r  e.  NN0  ( [. W  /  x ]. ps  /\  ph )
)
Distinct variable groups:    A, r, s, t    B, r, s, t    W, r, x, y, z    W, s, t, y    ph, z    ph, s, t    ps, z    th, z    th, s, t
Allowed substitution hints:    ph( x, y, r)    ps( x, y, t, s, r)    th( x, y, r)    A( x, y, z)    B( x, y, z)

Proof of Theorem bezoutlemstep
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 bezoutlemstep.is-bezout . . . 4  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
2 bezoutlemstep.a . . . 4  |-  ( th 
->  A  e.  NN0 )
3 bezoutlemstep.b . . . 4  |-  ( th 
->  B  e.  NN0 )
4 bezoutlemstep.w . . . 4  |-  ( th 
->  W  e.  NN )
5 bezoutlemstep.y-is-bezout . . . 4  |-  ( th 
->  [ y  /  r ] ph )
6 bezoutlemstep.y-nn0 . . . 4  |-  ( th 
->  y  e.  NN0 )
7 bezoutlemstep.w-is-bezout . . . 4  |-  ( th 
->  [. W  /  r ]. ph )
81, 2, 3, 4, 5, 6, 7bezoutlemnewy 11852 . . 3  |-  ( th 
->  [. ( y  mod 
W )  /  r ]. ph )
9 bezoutlemstep.hyp . . 3  |-  ( ( th  /\  [. (
y  mod  W )  /  r ]. ph )  ->  E. r  e.  NN0  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)
108, 9mpdan 418 . 2  |-  ( th 
->  E. r  e.  NN0  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)
11 bezoutlemstep.thr . . 3  |-  F/ r th
12 eqidd 2155 . . . . . 6  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  ( y  mod 
W )  =  ( y  mod  W ) )
136nn0zd 9263 . . . . . . . 8  |-  ( th 
->  y  e.  ZZ )
1413ad2antrr 480 . . . . . . 7  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  y  e.  ZZ )
154ad2antrr 480 . . . . . . 7  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  W  e.  NN )
1613, 4zmodcld 10222 . . . . . . . 8  |-  ( th 
->  ( y  mod  W
)  e.  NN0 )
1716ad2antrr 480 . . . . . . 7  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  ( y  mod 
W )  e.  NN0 )
18 zq 9513 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  QQ )
1914, 18syl 14 . . . . . . . 8  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  y  e.  QQ )
2015nnzd 9264 . . . . . . . . 9  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  W  e.  ZZ )
21 zq 9513 . . . . . . . . 9  |-  ( W  e.  ZZ  ->  W  e.  QQ )
2220, 21syl 14 . . . . . . . 8  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  W  e.  QQ )
2315nngt0d 8856 . . . . . . . 8  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  0  <  W
)
24 modqlt 10210 . . . . . . . 8  |-  ( ( y  e.  QQ  /\  W  e.  QQ  /\  0  <  W )  ->  (
y  mod  W )  <  W )
2519, 22, 23, 24syl3anc 1217 . . . . . . 7  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  ( y  mod 
W )  <  W
)
26 modremain 11793 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  W  e.  NN  /\  (
( y  mod  W
)  e.  NN0  /\  ( y  mod  W
)  <  W )
)  ->  ( (
y  mod  W )  =  ( y  mod 
W )  <->  E. q  e.  ZZ  ( ( q  x.  W )  +  ( y  mod  W
) )  =  y ) )
2714, 15, 17, 25, 26syl112anc 1221 . . . . . 6  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  ( ( y  mod  W )  =  ( y  mod  W
)  <->  E. q  e.  ZZ  ( ( q  x.  W )  +  ( y  mod  W ) )  =  y ) )
2812, 27mpbid 146 . . . . 5  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  E. q  e.  ZZ  ( ( q  x.  W )  +  ( y  mod  W ) )  =  y )
29 simplrl 525 . . . . . . . . . . . . . 14  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps )
30 bezoutlemstep.thx . . . . . . . . . . . . . . . . 17  |-  F/ x th
31 bezoutlemstep.sub-gcd . . . . . . . . . . . . . . . . . . 19  |-  ( ps  <->  A. z  e.  NN0  (
z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )
3231sbcbii 2992 . . . . . . . . . . . . . . . . . 18  |-  ( [. W  /  y ]. ps  <->  [. W  /  y ]. A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )
33 breq2 3965 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  W  ->  (
z  ||  y  <->  z  ||  W ) )
3433anbi2d 460 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  W  ->  (
( z  ||  x  /\  z  ||  y )  <-> 
( z  ||  x  /\  z  ||  W ) ) )
3534imbi2d 229 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  W  ->  (
( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W
) ) ) )
3635ralbidv 2454 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  W  ->  ( A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W ) ) ) )
3736sbcieg 2965 . . . . . . . . . . . . . . . . . . 19  |-  ( W  e.  NN  ->  ( [. W  /  y ]. A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W ) ) ) )
384, 37syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( th 
->  ( [. W  / 
y ]. A. z  e. 
NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y
) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W
) ) ) )
3932, 38syl5bb 191 . . . . . . . . . . . . . . . . 17  |-  ( th 
->  ( [. W  / 
y ]. ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W
) ) ) )
4030, 39sbcbid 2990 . . . . . . . . . . . . . . . 16  |-  ( th 
->  ( [. ( y  mod  W )  /  x ]. [. W  / 
y ]. ps  <->  [. ( y  mod  W )  /  x ]. A. z  e. 
NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W
) ) ) )
41 breq2 3965 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( y  mod 
W )  ->  (
z  ||  x  <->  z  ||  ( y  mod  W
) ) )
4241anbi1d 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( y  mod 
W )  ->  (
( z  ||  x  /\  z  ||  W )  <-> 
( z  ||  (
y  mod  W )  /\  z  ||  W ) ) )
4342imbi2d 229 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( y  mod 
W )  ->  (
( z  ||  r  ->  ( z  ||  x  /\  z  ||  W ) )  <->  ( z  ||  r  ->  ( z  ||  ( y  mod  W
)  /\  z  ||  W ) ) ) )
4443ralbidv 2454 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( y  mod 
W )  ->  ( A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  (
y  mod  W )  /\  z  ||  W ) ) ) )
4544sbcieg 2965 . . . . . . . . . . . . . . . . 17  |-  ( ( y  mod  W )  e.  NN0  ->  ( [. ( y  mod  W
)  /  x ]. A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  (
y  mod  W )  /\  z  ||  W ) ) ) )
4616, 45syl 14 . . . . . . . . . . . . . . . 16  |-  ( th 
->  ( [. ( y  mod  W )  /  x ]. A. z  e. 
NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W
) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  ( y  mod  W
)  /\  z  ||  W ) ) ) )
4740, 46bitrd 187 . . . . . . . . . . . . . . 15  |-  ( th 
->  ( [. ( y  mod  W )  /  x ]. [. W  / 
y ]. ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  ( y  mod  W
)  /\  z  ||  W ) ) ) )
4847ad3antrrr 484 . . . . . . . . . . . . . 14  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  (
y  mod  W )  /\  z  ||  W ) ) ) )
4929, 48mpbid 146 . . . . . . . . . . . . 13  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  (
y  mod  W )  /\  z  ||  W ) ) )
5049r19.21bi 2542 . . . . . . . . . . . 12  |-  ( ( ( ( ( th 
/\  r  e.  NN0 )  /\  ( [. (
y  mod  W )  /  x ]. [. W  /  y ]. ps  /\ 
ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod  W ) )  =  y ) )  /\  z  e. 
NN0 )  ->  (
z  ||  r  ->  ( z  ||  ( y  mod  W )  /\  z  ||  W ) ) )
5150imp 123 . . . . . . . . . . 11  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( z  ||  (
y  mod  W )  /\  z  ||  W ) )
5251simprd 113 . . . . . . . . . 10  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  ||  W )
53 simplr 520 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  e.  NN0 )
5453nn0zd 9263 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  e.  ZZ )
55 simprl 521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
q  e.  ZZ )
5655ad2antrr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
q  e.  ZZ )
5720ad3antrrr 484 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  ->  W  e.  ZZ )
58 dvdsmultr2 11700 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  q  e.  ZZ  /\  W  e.  ZZ )  ->  (
z  ||  W  ->  z 
||  ( q  x.  W ) ) )
5954, 56, 57, 58syl3anc 1217 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( z  ||  W  ->  z  ||  ( q  x.  W ) ) )
6052, 59mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  ||  ( q  x.  W ) )
6151simpld 111 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  ||  ( y  mod  W ) )
6256, 57zmulcld 9271 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( q  x.  W
)  e.  ZZ )
6317ad3antrrr 484 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( y  mod  W
)  e.  NN0 )
6463nn0zd 9263 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( y  mod  W
)  e.  ZZ )
65 dvds2add 11694 . . . . . . . . . . . . 13  |-  ( ( z  e.  ZZ  /\  ( q  x.  W
)  e.  ZZ  /\  ( y  mod  W
)  e.  ZZ )  ->  ( ( z 
||  ( q  x.  W )  /\  z  ||  ( y  mod  W
) )  ->  z  ||  ( ( q  x.  W )  +  ( y  mod  W ) ) ) )
6654, 62, 64, 65syl3anc 1217 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( ( z  ||  ( q  x.  W
)  /\  z  ||  ( y  mod  W
) )  ->  z  ||  ( ( q  x.  W )  +  ( y  mod  W ) ) ) )
6760, 61, 66mp2and 430 . . . . . . . . . . 11  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  ||  ( (
q  x.  W )  +  ( y  mod 
W ) ) )
68 simprr 522 . . . . . . . . . . . 12  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( ( q  x.  W )  +  ( y  mod  W ) )  =  y )
6968ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( ( q  x.  W )  +  ( y  mod  W ) )  =  y )
7067, 69breqtrd 3986 . . . . . . . . . 10  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  ||  y )
7152, 70jca 304 . . . . . . . . 9  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( z  ||  W  /\  z  ||  y ) )
7271ex 114 . . . . . . . 8  |-  ( ( ( ( ( th 
/\  r  e.  NN0 )  /\  ( [. (
y  mod  W )  /  x ]. [. W  /  y ]. ps  /\ 
ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod  W ) )  =  y ) )  /\  z  e. 
NN0 )  ->  (
z  ||  r  ->  ( z  ||  W  /\  z  ||  y ) ) )
7372ralrimiva 2527 . . . . . . 7  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y ) ) )
7431sbcbii 2992 . . . . . . . . 9  |-  ( [. W  /  x ]. ps  <->  [. W  /  x ]. A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )
75 breq2 3965 . . . . . . . . . . . . . 14  |-  ( x  =  W  ->  (
z  ||  x  <->  z  ||  W ) )
7675anbi1d 461 . . . . . . . . . . . . 13  |-  ( x  =  W  ->  (
( z  ||  x  /\  z  ||  y )  <-> 
( z  ||  W  /\  z  ||  y ) ) )
7776imbi2d 229 . . . . . . . . . . . 12  |-  ( x  =  W  ->  (
( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y
) ) ) )
7877ralbidv 2454 . . . . . . . . . . 11  |-  ( x  =  W  ->  ( A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y ) ) ) )
7978sbcieg 2965 . . . . . . . . . 10  |-  ( W  e.  NN  ->  ( [. W  /  x ]. A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y ) ) ) )
804, 79syl 14 . . . . . . . . 9  |-  ( th 
->  ( [. W  /  x ]. A. z  e. 
NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y
) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y
) ) ) )
8174, 80syl5bb 191 . . . . . . . 8  |-  ( th 
->  ( [. W  /  x ]. ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y
) ) ) )
8281ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( [. W  /  x ]. ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y ) ) ) )
8373, 82mpbird 166 . . . . . 6  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  [. W  /  x ]. ps )
84 simplrr 526 . . . . . 6  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  ph )
8583, 84jca 304 . . . . 5  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( [. W  /  x ]. ps  /\  ph )
)
8628, 85rexlimddv 2576 . . . 4  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  ( [. W  /  x ]. ps  /\  ph ) )
8786exp31 362 . . 3  |-  ( th 
->  ( r  e.  NN0  ->  ( ( [. (
y  mod  W )  /  x ]. [. W  /  y ]. ps  /\ 
ph )  ->  ( [. W  /  x ]. ps  /\  ph )
) ) )
8811, 87reximdai 2552 . 2  |-  ( th 
->  ( E. r  e. 
NN0  ( [. (
y  mod  W )  /  x ]. [. W  /  y ]. ps  /\ 
ph )  ->  E. r  e.  NN0  ( [. W  /  x ]. ps  /\  ph ) ) )
8910, 88mpd 13 1  |-  ( th 
->  E. r  e.  NN0  ( [. W  /  x ]. ps  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   F/wnf 1437   [wsb 1739    e. wcel 2125   A.wral 2432   E.wrex 2433   [.wsbc 2933   class class class wbr 3961  (class class class)co 5814   0cc0 7711    + caddc 7714    x. cmul 7716    < clt 7891   NNcn 8812   NN0cn0 9069   ZZcz 9146   QQcq 9506    mod cmo 10199    || cdvds 11660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fl 10147  df-mod 10200  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-dvds 11661
This theorem is referenced by:  bezoutlemmain  11854
  Copyright terms: Public domain W3C validator