ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemstep Unicode version

Theorem bezoutlemstep 12318
Description: Lemma for Bézout's identity. This is the induction step for the proof by induction. (Contributed by Jim Kingdon, 3-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemstep.is-bezout  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
bezoutlemstep.a  |-  ( th 
->  A  e.  NN0 )
bezoutlemstep.b  |-  ( th 
->  B  e.  NN0 )
bezoutlemstep.w  |-  ( th 
->  W  e.  NN )
bezoutlemstep.y-is-bezout  |-  ( th 
->  [ y  /  r ] ph )
bezoutlemstep.y-nn0  |-  ( th 
->  y  e.  NN0 )
bezoutlemstep.w-is-bezout  |-  ( th 
->  [. W  /  r ]. ph )
bezoutlemstep.sub-gcd  |-  ( ps  <->  A. z  e.  NN0  (
z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )
bezoutlemstep.hyp  |-  ( ( th  /\  [. (
y  mod  W )  /  r ]. ph )  ->  E. r  e.  NN0  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)
bezoutlemstep.thx  |-  F/ x th
bezoutlemstep.thr  |-  F/ r th
Assertion
Ref Expression
bezoutlemstep  |-  ( th 
->  E. r  e.  NN0  ( [. W  /  x ]. ps  /\  ph )
)
Distinct variable groups:    A, r, s, t    B, r, s, t    W, r, x, y, z    W, s, t, y    ph, z    ph, s, t    ps, z    th, z    th, s, t
Allowed substitution hints:    ph( x, y, r)    ps( x, y, t, s, r)    th( x, y, r)    A( x, y, z)    B( x, y, z)

Proof of Theorem bezoutlemstep
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 bezoutlemstep.is-bezout . . . 4  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
2 bezoutlemstep.a . . . 4  |-  ( th 
->  A  e.  NN0 )
3 bezoutlemstep.b . . . 4  |-  ( th 
->  B  e.  NN0 )
4 bezoutlemstep.w . . . 4  |-  ( th 
->  W  e.  NN )
5 bezoutlemstep.y-is-bezout . . . 4  |-  ( th 
->  [ y  /  r ] ph )
6 bezoutlemstep.y-nn0 . . . 4  |-  ( th 
->  y  e.  NN0 )
7 bezoutlemstep.w-is-bezout . . . 4  |-  ( th 
->  [. W  /  r ]. ph )
81, 2, 3, 4, 5, 6, 7bezoutlemnewy 12317 . . 3  |-  ( th 
->  [. ( y  mod 
W )  /  r ]. ph )
9 bezoutlemstep.hyp . . 3  |-  ( ( th  /\  [. (
y  mod  W )  /  r ]. ph )  ->  E. r  e.  NN0  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)
108, 9mpdan 421 . 2  |-  ( th 
->  E. r  e.  NN0  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)
11 bezoutlemstep.thr . . 3  |-  F/ r th
12 eqidd 2206 . . . . . 6  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  ( y  mod 
W )  =  ( y  mod  W ) )
136nn0zd 9493 . . . . . . . 8  |-  ( th 
->  y  e.  ZZ )
1413ad2antrr 488 . . . . . . 7  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  y  e.  ZZ )
154ad2antrr 488 . . . . . . 7  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  W  e.  NN )
1613, 4zmodcld 10490 . . . . . . . 8  |-  ( th 
->  ( y  mod  W
)  e.  NN0 )
1716ad2antrr 488 . . . . . . 7  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  ( y  mod 
W )  e.  NN0 )
18 zq 9747 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  QQ )
1914, 18syl 14 . . . . . . . 8  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  y  e.  QQ )
2015nnzd 9494 . . . . . . . . 9  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  W  e.  ZZ )
21 zq 9747 . . . . . . . . 9  |-  ( W  e.  ZZ  ->  W  e.  QQ )
2220, 21syl 14 . . . . . . . 8  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  W  e.  QQ )
2315nngt0d 9080 . . . . . . . 8  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  0  <  W
)
24 modqlt 10478 . . . . . . . 8  |-  ( ( y  e.  QQ  /\  W  e.  QQ  /\  0  <  W )  ->  (
y  mod  W )  <  W )
2519, 22, 23, 24syl3anc 1250 . . . . . . 7  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  ( y  mod 
W )  <  W
)
26 modremain 12240 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  W  e.  NN  /\  (
( y  mod  W
)  e.  NN0  /\  ( y  mod  W
)  <  W )
)  ->  ( (
y  mod  W )  =  ( y  mod 
W )  <->  E. q  e.  ZZ  ( ( q  x.  W )  +  ( y  mod  W
) )  =  y ) )
2714, 15, 17, 25, 26syl112anc 1254 . . . . . 6  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  ( ( y  mod  W )  =  ( y  mod  W
)  <->  E. q  e.  ZZ  ( ( q  x.  W )  +  ( y  mod  W ) )  =  y ) )
2812, 27mpbid 147 . . . . 5  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  E. q  e.  ZZ  ( ( q  x.  W )  +  ( y  mod  W ) )  =  y )
29 simplrl 535 . . . . . . . . . . . . . 14  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps )
30 bezoutlemstep.thx . . . . . . . . . . . . . . . . 17  |-  F/ x th
31 bezoutlemstep.sub-gcd . . . . . . . . . . . . . . . . . . 19  |-  ( ps  <->  A. z  e.  NN0  (
z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )
3231sbcbii 3058 . . . . . . . . . . . . . . . . . 18  |-  ( [. W  /  y ]. ps  <->  [. W  /  y ]. A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )
33 breq2 4048 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  W  ->  (
z  ||  y  <->  z  ||  W ) )
3433anbi2d 464 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  W  ->  (
( z  ||  x  /\  z  ||  y )  <-> 
( z  ||  x  /\  z  ||  W ) ) )
3534imbi2d 230 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  W  ->  (
( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W
) ) ) )
3635ralbidv 2506 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  W  ->  ( A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W ) ) ) )
3736sbcieg 3031 . . . . . . . . . . . . . . . . . . 19  |-  ( W  e.  NN  ->  ( [. W  /  y ]. A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W ) ) ) )
384, 37syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( th 
->  ( [. W  / 
y ]. A. z  e. 
NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y
) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W
) ) ) )
3932, 38bitrid 192 . . . . . . . . . . . . . . . . 17  |-  ( th 
->  ( [. W  / 
y ]. ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W
) ) ) )
4030, 39sbcbid 3056 . . . . . . . . . . . . . . . 16  |-  ( th 
->  ( [. ( y  mod  W )  /  x ]. [. W  / 
y ]. ps  <->  [. ( y  mod  W )  /  x ]. A. z  e. 
NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W
) ) ) )
41 breq2 4048 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( y  mod 
W )  ->  (
z  ||  x  <->  z  ||  ( y  mod  W
) ) )
4241anbi1d 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( y  mod 
W )  ->  (
( z  ||  x  /\  z  ||  W )  <-> 
( z  ||  (
y  mod  W )  /\  z  ||  W ) ) )
4342imbi2d 230 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( y  mod 
W )  ->  (
( z  ||  r  ->  ( z  ||  x  /\  z  ||  W ) )  <->  ( z  ||  r  ->  ( z  ||  ( y  mod  W
)  /\  z  ||  W ) ) ) )
4443ralbidv 2506 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( y  mod 
W )  ->  ( A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  (
y  mod  W )  /\  z  ||  W ) ) ) )
4544sbcieg 3031 . . . . . . . . . . . . . . . . 17  |-  ( ( y  mod  W )  e.  NN0  ->  ( [. ( y  mod  W
)  /  x ]. A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  (
y  mod  W )  /\  z  ||  W ) ) ) )
4616, 45syl 14 . . . . . . . . . . . . . . . 16  |-  ( th 
->  ( [. ( y  mod  W )  /  x ]. A. z  e. 
NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  W
) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  ( y  mod  W
)  /\  z  ||  W ) ) ) )
4740, 46bitrd 188 . . . . . . . . . . . . . . 15  |-  ( th 
->  ( [. ( y  mod  W )  /  x ]. [. W  / 
y ]. ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  ( y  mod  W
)  /\  z  ||  W ) ) ) )
4847ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  (
y  mod  W )  /\  z  ||  W ) ) ) )
4929, 48mpbid 147 . . . . . . . . . . . . 13  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  (
y  mod  W )  /\  z  ||  W ) ) )
5049r19.21bi 2594 . . . . . . . . . . . 12  |-  ( ( ( ( ( th 
/\  r  e.  NN0 )  /\  ( [. (
y  mod  W )  /  x ]. [. W  /  y ]. ps  /\ 
ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod  W ) )  =  y ) )  /\  z  e. 
NN0 )  ->  (
z  ||  r  ->  ( z  ||  ( y  mod  W )  /\  z  ||  W ) ) )
5150imp 124 . . . . . . . . . . 11  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( z  ||  (
y  mod  W )  /\  z  ||  W ) )
5251simprd 114 . . . . . . . . . 10  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  ||  W )
53 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  e.  NN0 )
5453nn0zd 9493 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  e.  ZZ )
55 simprl 529 . . . . . . . . . . . . . . 15  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
q  e.  ZZ )
5655ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
q  e.  ZZ )
5720ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  ->  W  e.  ZZ )
58 dvdsmultr2 12144 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  q  e.  ZZ  /\  W  e.  ZZ )  ->  (
z  ||  W  ->  z 
||  ( q  x.  W ) ) )
5954, 56, 57, 58syl3anc 1250 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( z  ||  W  ->  z  ||  ( q  x.  W ) ) )
6052, 59mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  ||  ( q  x.  W ) )
6151simpld 112 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  ||  ( y  mod  W ) )
6256, 57zmulcld 9501 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( q  x.  W
)  e.  ZZ )
6317ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( y  mod  W
)  e.  NN0 )
6463nn0zd 9493 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( y  mod  W
)  e.  ZZ )
65 dvds2add 12136 . . . . . . . . . . . . 13  |-  ( ( z  e.  ZZ  /\  ( q  x.  W
)  e.  ZZ  /\  ( y  mod  W
)  e.  ZZ )  ->  ( ( z 
||  ( q  x.  W )  /\  z  ||  ( y  mod  W
) )  ->  z  ||  ( ( q  x.  W )  +  ( y  mod  W ) ) ) )
6654, 62, 64, 65syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( ( z  ||  ( q  x.  W
)  /\  z  ||  ( y  mod  W
) )  ->  z  ||  ( ( q  x.  W )  +  ( y  mod  W ) ) ) )
6760, 61, 66mp2and 433 . . . . . . . . . . 11  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  ||  ( (
q  x.  W )  +  ( y  mod 
W ) ) )
68 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( ( q  x.  W )  +  ( y  mod  W ) )  =  y )
6968ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( ( q  x.  W )  +  ( y  mod  W ) )  =  y )
7067, 69breqtrd 4070 . . . . . . . . . 10  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
z  ||  y )
7152, 70jca 306 . . . . . . . . 9  |-  ( ( ( ( ( ( th  /\  r  e. 
NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  /\  z  e.  NN0 )  /\  z  ||  r )  -> 
( z  ||  W  /\  z  ||  y ) )
7271ex 115 . . . . . . . 8  |-  ( ( ( ( ( th 
/\  r  e.  NN0 )  /\  ( [. (
y  mod  W )  /  x ]. [. W  /  y ]. ps  /\ 
ph ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod  W ) )  =  y ) )  /\  z  e. 
NN0 )  ->  (
z  ||  r  ->  ( z  ||  W  /\  z  ||  y ) ) )
7372ralrimiva 2579 . . . . . . 7  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y ) ) )
7431sbcbii 3058 . . . . . . . . 9  |-  ( [. W  /  x ]. ps  <->  [. W  /  x ]. A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )
75 breq2 4048 . . . . . . . . . . . . . 14  |-  ( x  =  W  ->  (
z  ||  x  <->  z  ||  W ) )
7675anbi1d 465 . . . . . . . . . . . . 13  |-  ( x  =  W  ->  (
( z  ||  x  /\  z  ||  y )  <-> 
( z  ||  W  /\  z  ||  y ) ) )
7776imbi2d 230 . . . . . . . . . . . 12  |-  ( x  =  W  ->  (
( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y
) ) ) )
7877ralbidv 2506 . . . . . . . . . . 11  |-  ( x  =  W  ->  ( A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y ) ) ) )
7978sbcieg 3031 . . . . . . . . . 10  |-  ( W  e.  NN  ->  ( [. W  /  x ]. A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y ) ) ) )
804, 79syl 14 . . . . . . . . 9  |-  ( th 
->  ( [. W  /  x ]. A. z  e. 
NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y
) )  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y
) ) ) )
8174, 80bitrid 192 . . . . . . . 8  |-  ( th 
->  ( [. W  /  x ]. ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y
) ) ) )
8281ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( [. W  /  x ]. ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  W  /\  z  ||  y ) ) ) )
8373, 82mpbird 167 . . . . . 6  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  [. W  /  x ]. ps )
84 simplrr 536 . . . . . 6  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  ph )
8583, 84jca 306 . . . . 5  |-  ( ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod 
W )  /  x ]. [. W  /  y ]. ps  /\  ph )
)  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( [. W  /  x ]. ps  /\  ph )
)
8628, 85rexlimddv 2628 . . . 4  |-  ( ( ( th  /\  r  e.  NN0 )  /\  ( [. ( y  mod  W
)  /  x ]. [. W  /  y ]. ps  /\  ph ) )  ->  ( [. W  /  x ]. ps  /\  ph ) )
8786exp31 364 . . 3  |-  ( th 
->  ( r  e.  NN0  ->  ( ( [. (
y  mod  W )  /  x ]. [. W  /  y ]. ps  /\ 
ph )  ->  ( [. W  /  x ]. ps  /\  ph )
) ) )
8811, 87reximdai 2604 . 2  |-  ( th 
->  ( E. r  e. 
NN0  ( [. (
y  mod  W )  /  x ]. [. W  /  y ]. ps  /\ 
ph )  ->  E. r  e.  NN0  ( [. W  /  x ]. ps  /\  ph ) ) )
8910, 88mpd 13 1  |-  ( th 
->  E. r  e.  NN0  ( [. W  /  x ]. ps  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   F/wnf 1483   [wsb 1785    e. wcel 2176   A.wral 2484   E.wrex 2485   [.wsbc 2998   class class class wbr 4044  (class class class)co 5944   0cc0 7925    + caddc 7928    x. cmul 7930    < clt 8107   NNcn 9036   NN0cn0 9295   ZZcz 9372   QQcq 9740    mod cmo 10467    || cdvds 12098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099
This theorem is referenced by:  bezoutlemmain  12319
  Copyright terms: Public domain W3C validator