| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbid | GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbcbid.1 | ⊢ Ⅎ𝑥𝜑 |
| sbcbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcbid | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbcbid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | abbid 2346 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
| 4 | 3 | eleq2d 2299 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐴 ∈ {𝑥 ∣ 𝜒})) |
| 5 | df-sbc 3029 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 6 | df-sbc 3029 | . 2 ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝐴 ∈ {𝑥 ∣ 𝜒}) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1506 ∈ wcel 2200 {cab 2215 [wsbc 3028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-sbc 3029 |
| This theorem is referenced by: sbcbidv 3087 csbeq2d 3149 bezoutlemstep 12513 |
| Copyright terms: Public domain | W3C validator |