| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbid | GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbcbid.1 | ⊢ Ⅎ𝑥𝜑 |
| sbcbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcbid | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbcbid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | abbid 2321 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
| 4 | 3 | eleq2d 2274 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐴 ∈ {𝑥 ∣ 𝜒})) |
| 5 | df-sbc 2998 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 6 | df-sbc 2998 | . 2 ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝐴 ∈ {𝑥 ∣ 𝜒}) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1482 ∈ wcel 2175 {cab 2190 [wsbc 2997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-sbc 2998 |
| This theorem is referenced by: sbcbidv 3056 csbeq2d 3117 bezoutlemstep 12289 |
| Copyright terms: Public domain | W3C validator |