ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbid GIF version

Theorem sbcbid 3008
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcbid.1 𝑥𝜑
sbcbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbcbid (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))

Proof of Theorem sbcbid
StepHypRef Expression
1 sbcbid.1 . . . 4 𝑥𝜑
2 sbcbid.2 . . . 4 (𝜑 → (𝜓𝜒))
31, 2abbid 2283 . . 3 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
43eleq2d 2236 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐴 ∈ {𝑥𝜒}))
5 df-sbc 2952 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
6 df-sbc 2952 . 2 ([𝐴 / 𝑥]𝜒𝐴 ∈ {𝑥𝜒})
74, 5, 63bitr4g 222 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wnf 1448  wcel 2136  {cab 2151  [wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-sbc 2952
This theorem is referenced by:  sbcbidv  3009  csbeq2d  3070  bezoutlemstep  11930
  Copyright terms: Public domain W3C validator