![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcbid | GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcbid.1 | ⊢ Ⅎ𝑥𝜑 |
sbcbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcbid | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | sbcbid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | abbid 2231 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
4 | 3 | eleq2d 2184 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐴 ∈ {𝑥 ∣ 𝜒})) |
5 | df-sbc 2879 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
6 | df-sbc 2879 | . 2 ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝐴 ∈ {𝑥 ∣ 𝜒}) | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1419 ∈ wcel 1463 {cab 2101 [wsbc 2878 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-11 1467 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-sbc 2879 |
This theorem is referenced by: sbcbidv 2935 csbeq2d 2993 bezoutlemstep 11531 |
Copyright terms: Public domain | W3C validator |