ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbidv Unicode version

Theorem sbcbidv 3064
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
Hypothesis
Ref Expression
sbcbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
sbcbidv  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. A  /  x ]. ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem sbcbidv
StepHypRef Expression
1 nfv 1552 . 2  |-  F/ x ph
2 sbcbidv.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2sbcbid 3063 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  [. A  /  x ]. ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   [.wsbc 3005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-sbc 3006
This theorem is referenced by:  sbcbii  3065  csbcomg  3124  opelopabsb  4324  opelopabgf  4334  opelopabf  4339  sbcfng  5443  sbcfg  5444  uchoice  6246  f1od2  6344  wrd2ind  11214  islmod  14168
  Copyright terms: Public domain W3C validator