Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbidv Unicode version

Theorem sbcbidv 2967
 Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
Hypothesis
Ref Expression
sbcbidv.1
Assertion
Ref Expression
sbcbidv
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem sbcbidv
StepHypRef Expression
1 nfv 1508 . 2
2 sbcbidv.1 . 2
31, 2sbcbid 2966 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104  wsbc 2909 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-sbc 2910 This theorem is referenced by:  sbcbii  2968  csbcomg  3025  opelopabsb  4182  opelopabf  4196  sbcfng  5270  sbcfg  5271  f1od2  6132
 Copyright terms: Public domain W3C validator