ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel2gv GIF version

Theorem sbcel2gv 3049
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcel2gv (𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel2gv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2257 . 2 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2 eleq2 2257 . 2 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
31, 2sbcie2g 3019 1 (𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2164  [wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986
This theorem is referenced by:  sbcel21v  3050  csbvarg  3108
  Copyright terms: Public domain W3C validator