Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcel2gv | GIF version |
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
sbcel2gv | ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2234 | . 2 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | |
2 | eleq2 2234 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | sbcie2g 2988 | 1 ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2141 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 |
This theorem is referenced by: sbcel21v 3019 csbvarg 3077 |
Copyright terms: Public domain | W3C validator |