Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcie2g | Unicode version |
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 2967 avoids a disjointness condition on and by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
sbcie2g.1 | |
sbcie2g.2 |
Ref | Expression |
---|---|
sbcie2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2935 | . 2 | |
2 | sbcie2g.2 | . 2 | |
3 | sbsbc 2937 | . . 3 | |
4 | nfv 1505 | . . . 4 | |
5 | sbcie2g.1 | . . . 4 | |
6 | 4, 5 | sbie 1768 | . . 3 |
7 | 3, 6 | bitr3i 185 | . 2 |
8 | 1, 2, 7 | vtoclbg 2770 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1332 wsb 1739 wcel 2125 wsbc 2933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-sbc 2934 |
This theorem is referenced by: sbcel2gv 2996 csbie2g 3077 brab1 4007 |
Copyright terms: Public domain | W3C validator |