Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcie2g | Unicode version |
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 2985 avoids a disjointness condition on and by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
sbcie2g.1 | |
sbcie2g.2 |
Ref | Expression |
---|---|
sbcie2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2953 | . 2 | |
2 | sbcie2g.2 | . 2 | |
3 | sbsbc 2955 | . . 3 | |
4 | nfv 1516 | . . . 4 | |
5 | sbcie2g.1 | . . . 4 | |
6 | 4, 5 | sbie 1779 | . . 3 |
7 | 3, 6 | bitr3i 185 | . 2 |
8 | 1, 2, 7 | vtoclbg 2787 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wsb 1750 wcel 2136 wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 |
This theorem is referenced by: sbcel2gv 3014 csbie2g 3095 brab1 4029 |
Copyright terms: Public domain | W3C validator |