ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcie2g Unicode version

Theorem sbcie2g 3039
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3040 avoids a disjointness condition on  x and  A by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
sbcie2g.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
sbcie2g.2  |-  ( y  =  A  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
sbcie2g  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ch ) )
Distinct variable groups:    x, y    y, A    ch, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    ch( x)    A( x)    V( x, y)

Proof of Theorem sbcie2g
StepHypRef Expression
1 dfsbcq 3007 . 2  |-  ( y  =  A  ->  ( [. y  /  x ]. ph  <->  [. A  /  x ]. ph ) )
2 sbcie2g.2 . 2  |-  ( y  =  A  ->  ( ps 
<->  ch ) )
3 sbsbc 3009 . . 3  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
4 nfv 1552 . . . 4  |-  F/ x ps
5 sbcie2g.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
64, 5sbie 1815 . . 3  |-  ( [ y  /  x ] ph 
<->  ps )
73, 6bitr3i 186 . 2  |-  ( [. y  /  x ]. ph  <->  ps )
81, 2, 7vtoclbg 2839 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   [wsb 1786    e. wcel 2178   [.wsbc 3005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sbc 3006
This theorem is referenced by:  sbcel2gv  3069  csbie2g  3152  brab1  4107
  Copyright terms: Public domain W3C validator