ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbvarg Unicode version

Theorem csbvarg 3108
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg  |-  ( A  e.  V  ->  [_ A  /  x ]_ x  =  A )

Proof of Theorem csbvarg
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 vex 2763 . . . . . 6  |-  y  e. 
_V
3 df-csb 3081 . . . . . . 7  |-  [_ y  /  x ]_ x  =  { z  |  [. y  /  x ]. z  e.  x }
4 sbcel2gv 3049 . . . . . . . 8  |-  ( y  e.  _V  ->  ( [. y  /  x ]. z  e.  x  <->  z  e.  y ) )
54abbi1dv 2313 . . . . . . 7  |-  ( y  e.  _V  ->  { z  |  [. y  /  x ]. z  e.  x }  =  y )
63, 5eqtrid 2238 . . . . . 6  |-  ( y  e.  _V  ->  [_ y  /  x ]_ x  =  y )
72, 6ax-mp 5 . . . . 5  |-  [_ y  /  x ]_ x  =  y
87csbeq2i 3107 . . . 4  |-  [_ A  /  y ]_ [_ y  /  x ]_ x  = 
[_ A  /  y ]_ y
9 csbco 3090 . . . 4  |-  [_ A  /  y ]_ [_ y  /  x ]_ x  = 
[_ A  /  x ]_ x
10 df-csb 3081 . . . 4  |-  [_ A  /  y ]_ y  =  { z  |  [. A  /  y ]. z  e.  y }
118, 9, 103eqtr3i 2222 . . 3  |-  [_ A  /  x ]_ x  =  { z  |  [. A  /  y ]. z  e.  y }
12 sbcel2gv 3049 . . . 4  |-  ( A  e.  _V  ->  ( [. A  /  y ]. z  e.  y  <->  z  e.  A ) )
1312abbi1dv 2313 . . 3  |-  ( A  e.  _V  ->  { z  |  [. A  / 
y ]. z  e.  y }  =  A )
1411, 13eqtrid 2238 . 2  |-  ( A  e.  _V  ->  [_ A  /  x ]_ x  =  A )
151, 14syl 14 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760   [.wsbc 2985   [_csb 3080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986  df-csb 3081
This theorem is referenced by:  sbccsb2g  3110  csbfvg  5594  f1od2  6288  csbwrdg  10943  divcncfap  14768  bj-sels  15406
  Copyright terms: Public domain W3C validator