ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbvarg Unicode version

Theorem csbvarg 3073
Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg  |-  ( A  e.  V  ->  [_ A  /  x ]_ x  =  A )

Proof of Theorem csbvarg
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 vex 2729 . . . . . 6  |-  y  e. 
_V
3 df-csb 3046 . . . . . . 7  |-  [_ y  /  x ]_ x  =  { z  |  [. y  /  x ]. z  e.  x }
4 sbcel2gv 3014 . . . . . . . 8  |-  ( y  e.  _V  ->  ( [. y  /  x ]. z  e.  x  <->  z  e.  y ) )
54abbi1dv 2286 . . . . . . 7  |-  ( y  e.  _V  ->  { z  |  [. y  /  x ]. z  e.  x }  =  y )
63, 5syl5eq 2211 . . . . . 6  |-  ( y  e.  _V  ->  [_ y  /  x ]_ x  =  y )
72, 6ax-mp 5 . . . . 5  |-  [_ y  /  x ]_ x  =  y
87csbeq2i 3072 . . . 4  |-  [_ A  /  y ]_ [_ y  /  x ]_ x  = 
[_ A  /  y ]_ y
9 csbco 3055 . . . 4  |-  [_ A  /  y ]_ [_ y  /  x ]_ x  = 
[_ A  /  x ]_ x
10 df-csb 3046 . . . 4  |-  [_ A  /  y ]_ y  =  { z  |  [. A  /  y ]. z  e.  y }
118, 9, 103eqtr3i 2194 . . 3  |-  [_ A  /  x ]_ x  =  { z  |  [. A  /  y ]. z  e.  y }
12 sbcel2gv 3014 . . . 4  |-  ( A  e.  _V  ->  ( [. A  /  y ]. z  e.  y  <->  z  e.  A ) )
1312abbi1dv 2286 . . 3  |-  ( A  e.  _V  ->  { z  |  [. A  / 
y ]. z  e.  y }  =  A )
1411, 13syl5eq 2211 . 2  |-  ( A  e.  _V  ->  [_ A  /  x ]_ x  =  A )
151, 14syl 14 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2726   [.wsbc 2951   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  sbccsb2g  3075  csbfvg  5524  f1od2  6203  bj-sels  13796
  Copyright terms: Public domain W3C validator