ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel1v Unicode version

Theorem sbcel1v 3052
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel1v  |-  ( [. A  /  x ]. x  e.  B  <->  A  e.  B
)
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem sbcel1v
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbcex 2998 . 2  |-  ( [. A  /  x ]. x  e.  B  ->  A  e. 
_V )
2 elex 2774 . 2  |-  ( A  e.  B  ->  A  e.  _V )
3 dfsbcq2 2992 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] x  e.  B  <->  [. A  /  x ]. x  e.  B )
)
4 eleq1 2259 . . 3  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
5 clelsb1 2301 . . 3  |-  ( [ y  /  x ]
x  e.  B  <->  y  e.  B )
63, 4, 5vtoclbg 2825 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. x  e.  B  <->  A  e.  B ) )
71, 2, 6pm5.21nii 705 1  |-  ( [. A  /  x ]. x  e.  B  <->  A  e.  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1776    e. wcel 2167   _Vcvv 2763   [.wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990
This theorem is referenced by:  f1od2  6293
  Copyright terms: Public domain W3C validator