ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel1v Unicode version

Theorem sbcel1v 3011
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel1v  |-  ( [. A  /  x ]. x  e.  B  <->  A  e.  B
)
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem sbcel1v
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbcex 2957 . 2  |-  ( [. A  /  x ]. x  e.  B  ->  A  e. 
_V )
2 elex 2735 . 2  |-  ( A  e.  B  ->  A  e.  _V )
3 dfsbcq2 2952 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] x  e.  B  <->  [. A  /  x ]. x  e.  B )
)
4 eleq1 2227 . . 3  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
5 clelsb3 2269 . . 3  |-  ( [ y  /  x ]
x  e.  B  <->  y  e.  B )
63, 4, 5vtoclbg 2785 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. x  e.  B  <->  A  e.  B ) )
71, 2, 6pm5.21nii 694 1  |-  ( [. A  /  x ]. x  e.  B  <->  A  e.  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1749    e. wcel 2135   _Vcvv 2724   [.wsbc 2949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2726  df-sbc 2950
This theorem is referenced by:  f1od2  6197
  Copyright terms: Public domain W3C validator