ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel1v Unicode version

Theorem sbcel1v 3048
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel1v  |-  ( [. A  /  x ]. x  e.  B  <->  A  e.  B
)
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem sbcel1v
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbcex 2994 . 2  |-  ( [. A  /  x ]. x  e.  B  ->  A  e. 
_V )
2 elex 2771 . 2  |-  ( A  e.  B  ->  A  e.  _V )
3 dfsbcq2 2988 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] x  e.  B  <->  [. A  /  x ]. x  e.  B )
)
4 eleq1 2256 . . 3  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
5 clelsb1 2298 . . 3  |-  ( [ y  /  x ]
x  e.  B  <->  y  e.  B )
63, 4, 5vtoclbg 2821 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. x  e.  B  <->  A  e.  B ) )
71, 2, 6pm5.21nii 705 1  |-  ( [. A  /  x ]. x  e.  B  <->  A  e.  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1773    e. wcel 2164   _Vcvv 2760   [.wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986
This theorem is referenced by:  f1od2  6288
  Copyright terms: Public domain W3C validator