ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcco3g Unicode version

Theorem sbcco3g 3102
Description: Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
Hypothesis
Ref Expression
sbcco3g.1  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
sbcco3g  |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. C  /  y ]. ph ) )
Distinct variable groups:    x, A    ph, x    x, C
Allowed substitution hints:    ph( y)    A( y)    B( x, y)    C( y)    V( x, y)

Proof of Theorem sbcco3g
StepHypRef Expression
1 sbcnestg 3098 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  y ]. ph ) )
2 elex 2737 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
3 nfcvd 2309 . . . 4  |-  ( A  e.  _V  ->  F/_ x C )
4 sbcco3g.1 . . . 4  |-  ( x  =  A  ->  B  =  C )
53, 4csbiegf 3088 . . 3  |-  ( A  e.  _V  ->  [_ A  /  x ]_ B  =  C )
6 dfsbcq 2953 . . 3  |-  ( [_ A  /  x ]_ B  =  C  ->  ( [. [_ A  /  x ]_ B  /  y ]. ph  <->  [. C  / 
y ]. ph ) )
72, 5, 63syl 17 . 2  |-  ( A  e.  V  ->  ( [. [_ A  /  x ]_ B  /  y ]. ph  <->  [. C  /  y ]. ph ) )
81, 7bitrd 187 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. C  /  y ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   [.wsbc 2951   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  fzshftral  10043
  Copyright terms: Public domain W3C validator