ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcco3g Unicode version

Theorem sbcco3g 3106
Description: Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
Hypothesis
Ref Expression
sbcco3g.1  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
sbcco3g  |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. C  /  y ]. ph ) )
Distinct variable groups:    x, A    ph, x    x, C
Allowed substitution hints:    ph( y)    A( y)    B( x, y)    C( y)    V( x, y)

Proof of Theorem sbcco3g
StepHypRef Expression
1 sbcnestg 3102 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  y ]. ph ) )
2 elex 2741 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
3 nfcvd 2313 . . . 4  |-  ( A  e.  _V  ->  F/_ x C )
4 sbcco3g.1 . . . 4  |-  ( x  =  A  ->  B  =  C )
53, 4csbiegf 3092 . . 3  |-  ( A  e.  _V  ->  [_ A  /  x ]_ B  =  C )
6 dfsbcq 2957 . . 3  |-  ( [_ A  /  x ]_ B  =  C  ->  ( [. [_ A  /  x ]_ B  /  y ]. ph  <->  [. C  / 
y ]. ph ) )
72, 5, 63syl 17 . 2  |-  ( A  e.  V  ->  ( [. [_ A  /  x ]_ B  /  y ]. ph  <->  [. C  /  y ]. ph ) )
81, 7bitrd 187 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. C  /  y ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   [.wsbc 2955   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  fzshftral  10057
  Copyright terms: Public domain W3C validator