| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2h | Unicode version | ||
| Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| sbco2h.1 |
|
| Ref | Expression |
|---|---|
| sbco2h |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2h.1 |
. . . . 5
| |
| 2 | 1 | nfi 1508 |
. . . 4
|
| 3 | 2 | sbco2yz 2014 |
. . 3
|
| 4 | 3 | sbbii 1811 |
. 2
|
| 5 | nfv 1574 |
. . 3
| |
| 6 | 5 | sbco2yz 2014 |
. 2
|
| 7 | nfv 1574 |
. . 3
| |
| 8 | 7 | sbco2yz 2014 |
. 2
|
| 9 | 4, 6, 8 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: sbco2 2016 sbco2d 2017 sbco3 2025 sb9 2030 elsb1 2207 elsb2 2208 |
| Copyright terms: Public domain | W3C validator |