ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2h Unicode version

Theorem sbco2h 1898
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
sbco2h.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
sbco2h  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )

Proof of Theorem sbco2h
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbco2h.1 . . . . 5  |-  ( ph  ->  A. z ph )
21nfi 1406 . . . 4  |-  F/ z
ph
32sbco2yz 1897 . . 3  |-  ( [ w  /  z ] [ z  /  x ] ph  <->  [ w  /  x ] ph )
43sbbii 1706 . 2  |-  ( [ y  /  w ] [ w  /  z ] [ z  /  x ] ph  <->  [ y  /  w ] [ w  /  x ] ph )
5 nfv 1476 . . 3  |-  F/ w [ z  /  x ] ph
65sbco2yz 1897 . 2  |-  ( [ y  /  w ] [ w  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] [ z  /  x ] ph )
7 nfv 1476 . . 3  |-  F/ w ph
87sbco2yz 1897 . 2  |-  ( [ y  /  w ] [ w  /  x ] ph  <->  [ y  /  x ] ph )
94, 6, 83bitr3i 209 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1297   [wsb 1703
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-sb 1704
This theorem is referenced by:  sbco2  1899  sbco2d  1900  sbco3  1908  elsb3  1912  elsb4  1913  sb9  1915
  Copyright terms: Public domain W3C validator