| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbco2h | Unicode version | ||
| Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| sbco2h.1 | 
 | 
| Ref | Expression | 
|---|---|
| sbco2h | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbco2h.1 | 
. . . . 5
 | |
| 2 | 1 | nfi 1476 | 
. . . 4
 | 
| 3 | 2 | sbco2yz 1982 | 
. . 3
 | 
| 4 | 3 | sbbii 1779 | 
. 2
 | 
| 5 | nfv 1542 | 
. . 3
 | |
| 6 | 5 | sbco2yz 1982 | 
. 2
 | 
| 7 | nfv 1542 | 
. . 3
 | |
| 8 | 7 | sbco2yz 1982 | 
. 2
 | 
| 9 | 4, 6, 8 | 3bitr3i 210 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sbco2 1984 sbco2d 1985 sbco3 1993 sb9 1998 elsb1 2174 elsb2 2175 | 
| Copyright terms: Public domain | W3C validator |