ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2h Unicode version

Theorem sbco2h 1983
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
sbco2h.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
sbco2h  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )

Proof of Theorem sbco2h
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbco2h.1 . . . . 5  |-  ( ph  ->  A. z ph )
21nfi 1476 . . . 4  |-  F/ z
ph
32sbco2yz 1982 . . 3  |-  ( [ w  /  z ] [ z  /  x ] ph  <->  [ w  /  x ] ph )
43sbbii 1779 . 2  |-  ( [ y  /  w ] [ w  /  z ] [ z  /  x ] ph  <->  [ y  /  w ] [ w  /  x ] ph )
5 nfv 1542 . . 3  |-  F/ w [ z  /  x ] ph
65sbco2yz 1982 . 2  |-  ( [ y  /  w ] [ w  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] [ z  /  x ] ph )
7 nfv 1542 . . 3  |-  F/ w ph
87sbco2yz 1982 . 2  |-  ( [ y  /  w ] [ w  /  x ] ph  <->  [ y  /  x ] ph )
94, 6, 83bitr3i 210 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  sbco2  1984  sbco2d  1985  sbco3  1993  sb9  1998  elsb1  2174  elsb2  2175
  Copyright terms: Public domain W3C validator