| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2yz | GIF version | ||
| Description: This is a version of sbco2 1984 where 𝑧 is distinct from 𝑦. It is a lemma on the way to proving sbco2 1984 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| sbco2yz.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| sbco2yz | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2yz.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfsb 1965 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| 3 | 2 | nfri 1533 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
| 4 | sbequ 1854 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 5 | 3, 4 | sbieh 1804 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 Ⅎwnf 1474 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: sbco2h 1983 |
| Copyright terms: Public domain | W3C validator |