ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2yz GIF version

Theorem sbco2yz 1982
Description: This is a version of sbco2 1984 where 𝑧 is distinct from 𝑦. It is a lemma on the way to proving sbco2 1984 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
sbco2yz.1 𝑧𝜑
Assertion
Ref Expression
sbco2yz ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbco2yz
StepHypRef Expression
1 sbco2yz.1 . . . 4 𝑧𝜑
21nfsb 1965 . . 3 𝑧[𝑦 / 𝑥]𝜑
32nfri 1533 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
4 sbequ 1854 . 2 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
53, 4sbieh 1804 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wnf 1474  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  sbco2h  1983
  Copyright terms: Public domain W3C validator