| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2yz | GIF version | ||
| Description: This is a version of sbco2 2016 where 𝑧 is distinct from 𝑦. It is a lemma on the way to proving sbco2 2016 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| sbco2yz.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| sbco2yz | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2yz.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfsb 1997 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| 3 | 2 | nfri 1565 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
| 4 | sbequ 1886 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 5 | 3, 4 | sbieh 1836 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 Ⅎwnf 1506 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: sbco2h 2015 |
| Copyright terms: Public domain | W3C validator |