| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2yz | GIF version | ||
| Description: This is a version of sbco2 1994 where 𝑧 is distinct from 𝑦. It is a lemma on the way to proving sbco2 1994 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| sbco2yz.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| sbco2yz | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2yz.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfsb 1975 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| 3 | 2 | nfri 1543 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
| 4 | sbequ 1864 | . 2 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 5 | 3, 4 | sbieh 1814 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sbco2h 1993 |
| Copyright terms: Public domain | W3C validator |