ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3 GIF version

Theorem sbco3 2003
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
sbco3 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)

Proof of Theorem sbco3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbco3xzyz 2002 . . 3 ([𝑤 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑥][𝑥 / 𝑦]𝜑)
21sbbii 1789 . 2 ([𝑧 / 𝑤][𝑤 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑤][𝑤 / 𝑥][𝑥 / 𝑦]𝜑)
3 ax-17 1550 . . 3 ([𝑦 / 𝑥]𝜑 → ∀𝑤[𝑦 / 𝑥]𝜑)
43sbco2h 1993 . 2 ([𝑧 / 𝑤][𝑤 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
5 ax-17 1550 . . 3 ([𝑥 / 𝑦]𝜑 → ∀𝑤[𝑥 / 𝑦]𝜑)
65sbco2h 1993 . 2 ([𝑧 / 𝑤][𝑤 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
72, 4, 63bitr3i 210 1 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  sbcom  2004
  Copyright terms: Public domain W3C validator