ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegf Unicode version

Theorem spcegf 2863
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
Hypotheses
Ref Expression
spcgf.1  |-  F/_ x A
spcgf.2  |-  F/ x ps
spcgf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spcegf  |-  ( A  e.  V  ->  ( ps  ->  E. x ph )
)

Proof of Theorem spcegf
StepHypRef Expression
1 spcgf.2 . . 3  |-  F/ x ps
2 spcgf.1 . . 3  |-  F/_ x A
31, 2spcegft 2859 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  V  ->  ( ps  ->  E. x ph ) ) )
4 spcgf.3 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
53, 4mpg 1475 1  |-  ( A  e.  V  ->  ( ps  ->  E. x ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   F/wnf 1484   E.wex 1516    e. wcel 2178   F/_wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  spcegv  2868  rspce  2879  euotd  4317  seq3f1olemstep  10696
  Copyright terms: Public domain W3C validator