Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcimdv | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
spcimdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
spcimdv | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimdv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ex 114 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | alrimiv 1862 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒))) |
4 | spcimdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | nfv 1516 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
6 | nfcv 2308 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
7 | 5, 6 | spcimgft 2802 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜓 → 𝜒))) |
8 | 3, 4, 7 | sylc 62 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: spcdv 2811 rspcimdv 2831 |
Copyright terms: Public domain | W3C validator |