![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spcimdv | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
spcimdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
spcimdv | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimdv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | alrimiv 1874 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒))) |
4 | spcimdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | nfv 1528 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
6 | nfcv 2319 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
7 | 5, 6 | spcimgft 2815 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜓 → 𝜒))) |
8 | 3, 4, 7 | sylc 62 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 = wceq 1353 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 |
This theorem is referenced by: spcdv 2824 rspcimdv 2844 |
Copyright terms: Public domain | W3C validator |