ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifin0 Unicode version

Theorem ssdifin0 3573
Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ssdifin0  |-  ( A 
C_  ( B  \  C )  ->  ( A  i^i  C )  =  (/) )

Proof of Theorem ssdifin0
StepHypRef Expression
1 ssrin 3429 . 2  |-  ( A 
C_  ( B  \  C )  ->  ( A  i^i  C )  C_  ( ( B  \  C )  i^i  C
) )
2 incom 3396 . . 3  |-  ( ( B  \  C )  i^i  C )  =  ( C  i^i  ( B  \  C ) )
3 disjdif 3564 . . 3  |-  ( C  i^i  ( B  \  C ) )  =  (/)
42, 3eqtri 2250 . 2  |-  ( ( B  \  C )  i^i  C )  =  (/)
5 sseq0 3533 . 2  |-  ( ( ( A  i^i  C
)  C_  ( ( B  \  C )  i^i 
C )  /\  (
( B  \  C
)  i^i  C )  =  (/) )  ->  ( A  i^i  C )  =  (/) )
61, 4, 5sylancl 413 1  |-  ( A 
C_  ( B  \  C )  ->  ( A  i^i  C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    \ cdif 3194    i^i cin 3196    C_ wss 3197   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  ssdifeq0  3574
  Copyright terms: Public domain W3C validator