ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifeq0 Unicode version

Theorem ssdifeq0 3529
Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.)
Assertion
Ref Expression
ssdifeq0  |-  ( A 
C_  ( B  \  A )  <->  A  =  (/) )

Proof of Theorem ssdifeq0
StepHypRef Expression
1 inidm 3368 . . 3  |-  ( A  i^i  A )  =  A
2 ssdifin0 3528 . . 3  |-  ( A 
C_  ( B  \  A )  ->  ( A  i^i  A )  =  (/) )
31, 2eqtr3id 2240 . 2  |-  ( A 
C_  ( B  \  A )  ->  A  =  (/) )
4 0ss 3485 . . 3  |-  (/)  C_  ( B  \  (/) )
5 id 19 . . . 4  |-  ( A  =  (/)  ->  A  =  (/) )
6 difeq2 3271 . . . 4  |-  ( A  =  (/)  ->  ( B 
\  A )  =  ( B  \  (/) ) )
75, 6sseq12d 3210 . . 3  |-  ( A  =  (/)  ->  ( A 
C_  ( B  \  A )  <->  (/)  C_  ( B  \  (/) ) ) )
84, 7mpbiri 168 . 2  |-  ( A  =  (/)  ->  A  C_  ( B  \  A ) )
93, 8impbii 126 1  |-  ( A 
C_  ( B  \  A )  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    \ cdif 3150    i^i cin 3152    C_ wss 3153   (/)c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator