Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssdifeq0 | Unicode version |
Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
Ref | Expression |
---|---|
ssdifeq0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 3329 | . . 3 | |
2 | ssdifin0 3488 | . . 3 | |
3 | 1, 2 | eqtr3id 2211 | . 2 |
4 | 0ss 3445 | . . 3 | |
5 | id 19 | . . . 4 | |
6 | difeq2 3232 | . . . 4 | |
7 | 5, 6 | sseq12d 3171 | . . 3 |
8 | 4, 7 | mpbiri 167 | . 2 |
9 | 3, 8 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1342 cdif 3111 cin 3113 wss 3114 c0 3407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rab 2451 df-v 2726 df-dif 3116 df-in 3120 df-ss 3127 df-nul 3408 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |