ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifss Unicode version

Theorem undifss 3541
Description: Union of complementary parts into whole. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undifss  |-  ( A 
C_  B  <->  ( A  u.  ( B  \  A
) )  C_  B
)

Proof of Theorem undifss
StepHypRef Expression
1 difss 3299 . . . 4  |-  ( B 
\  A )  C_  B
21jctr 315 . . 3  |-  ( A 
C_  B  ->  ( A  C_  B  /\  ( B  \  A )  C_  B ) )
3 unss 3347 . . 3  |-  ( ( A  C_  B  /\  ( B  \  A ) 
C_  B )  <->  ( A  u.  ( B  \  A
) )  C_  B
)
42, 3sylib 122 . 2  |-  ( A 
C_  B  ->  ( A  u.  ( B  \  A ) )  C_  B )
5 ssun1 3336 . . 3  |-  A  C_  ( A  u.  ( B  \  A ) )
6 sstr 3201 . . 3  |-  ( ( A  C_  ( A  u.  ( B  \  A
) )  /\  ( A  u.  ( B  \  A ) )  C_  B )  ->  A  C_  B )
75, 6mpan 424 . 2  |-  ( ( A  u.  ( B 
\  A ) ) 
C_  B  ->  A  C_  B )
84, 7impbii 126 1  |-  ( A 
C_  B  <->  ( A  u.  ( B  \  A
) )  C_  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \ cdif 3163    u. cun 3164    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179
This theorem is referenced by:  difsnss  3779  exmidundif  4250  exmidundifim  4251  undifdcss  7020
  Copyright terms: Public domain W3C validator