ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssindif0im Unicode version

Theorem ssindif0im 3474
Description: Subclass implies empty intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0im  |-  ( A 
C_  B  ->  ( A  i^i  ( _V  \  B ) )  =  (/) )

Proof of Theorem ssindif0im
StepHypRef Expression
1 ddifss 3365 . . 3  |-  B  C_  ( _V  \  ( _V  \  B ) )
2 sstr 3155 . . 3  |-  ( ( A  C_  B  /\  B  C_  ( _V  \ 
( _V  \  B
) ) )  ->  A  C_  ( _V  \ 
( _V  \  B
) ) )
31, 2mpan2 423 . 2  |-  ( A 
C_  B  ->  A  C_  ( _V  \  ( _V  \  B ) ) )
4 disj2 3470 . 2  |-  ( ( A  i^i  ( _V 
\  B ) )  =  (/)  <->  A  C_  ( _V 
\  ( _V  \  B ) ) )
53, 4sylibr 133 1  |-  ( A 
C_  B  ->  ( A  i^i  ( _V  \  B ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   _Vcvv 2730    \ cdif 3118    i^i cin 3120    C_ wss 3121   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator