ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssindif0im Unicode version

Theorem ssindif0im 3510
Description: Subclass implies empty intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0im  |-  ( A 
C_  B  ->  ( A  i^i  ( _V  \  B ) )  =  (/) )

Proof of Theorem ssindif0im
StepHypRef Expression
1 ddifss 3401 . . 3  |-  B  C_  ( _V  \  ( _V  \  B ) )
2 sstr 3191 . . 3  |-  ( ( A  C_  B  /\  B  C_  ( _V  \ 
( _V  \  B
) ) )  ->  A  C_  ( _V  \ 
( _V  \  B
) ) )
31, 2mpan2 425 . 2  |-  ( A 
C_  B  ->  A  C_  ( _V  \  ( _V  \  B ) ) )
4 disj2 3506 . 2  |-  ( ( A  i^i  ( _V 
\  B ) )  =  (/)  <->  A  C_  ( _V 
\  ( _V  \  B ) ) )
53, 4sylibr 134 1  |-  ( A 
C_  B  ->  ( A  i^i  ( _V  \  B ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   _Vcvv 2763    \ cdif 3154    i^i cin 3156    C_ wss 3157   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator