![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssindif0im | GIF version |
Description: Subclass implies empty intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ssindif0im | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ddifss 3375 | . . 3 ⊢ 𝐵 ⊆ (V ∖ (V ∖ 𝐵)) | |
2 | sstr 3165 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ (V ∖ (V ∖ 𝐵))) → 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) |
4 | disj2 3480 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
5 | 3, 4 | sylibr 134 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 Vcvv 2739 ∖ cdif 3128 ∩ cin 3130 ⊆ wss 3131 ∅c0 3424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2741 df-dif 3133 df-in 3137 df-ss 3144 df-nul 3425 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |