ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssindif0im GIF version

Theorem ssindif0im 3497
Description: Subclass implies empty intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0im (𝐴𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅)

Proof of Theorem ssindif0im
StepHypRef Expression
1 ddifss 3388 . . 3 𝐵 ⊆ (V ∖ (V ∖ 𝐵))
2 sstr 3178 . . 3 ((𝐴𝐵𝐵 ⊆ (V ∖ (V ∖ 𝐵))) → 𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
31, 2mpan2 425 . 2 (𝐴𝐵𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
4 disj2 3493 . 2 ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
53, 4sylibr 134 1 (𝐴𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2752  cdif 3141  cin 3143  wss 3144  c0 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-dif 3146  df-in 3150  df-ss 3157  df-nul 3438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator