Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssindif0im | GIF version |
Description: Subclass implies empty intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ssindif0im | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ddifss 3365 | . . 3 ⊢ 𝐵 ⊆ (V ∖ (V ∖ 𝐵)) | |
2 | sstr 3155 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ (V ∖ (V ∖ 𝐵))) → 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
3 | 1, 2 | mpan2 423 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) |
4 | disj2 3470 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
5 | 3, 4 | sylibr 133 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 Vcvv 2730 ∖ cdif 3118 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |