![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssindif0im | GIF version |
Description: Subclass implies empty intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ssindif0im | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ddifss 3388 | . . 3 ⊢ 𝐵 ⊆ (V ∖ (V ∖ 𝐵)) | |
2 | sstr 3178 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ (V ∖ (V ∖ 𝐵))) → 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) |
4 | disj2 3493 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
5 | 3, 4 | sylibr 134 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Vcvv 2752 ∖ cdif 3141 ∩ cin 3143 ⊆ wss 3144 ∅c0 3437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-v 2754 df-dif 3146 df-in 3150 df-ss 3157 df-nul 3438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |