ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssindif0im GIF version

Theorem ssindif0im 3468
Description: Subclass implies empty intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0im (𝐴𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅)

Proof of Theorem ssindif0im
StepHypRef Expression
1 ddifss 3360 . . 3 𝐵 ⊆ (V ∖ (V ∖ 𝐵))
2 sstr 3150 . . 3 ((𝐴𝐵𝐵 ⊆ (V ∖ (V ∖ 𝐵))) → 𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
31, 2mpan2 422 . 2 (𝐴𝐵𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
4 disj2 3464 . 2 ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵)))
53, 4sylibr 133 1 (𝐴𝐵 → (𝐴 ∩ (V ∖ 𝐵)) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  Vcvv 2726  cdif 3113  cin 3115  wss 3116  c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator